博碩士論文 93642003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.145.156.2
姓名 古佳艷(Chia-Yen Ku)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 臺灣到呂宋島間板塊聚合帶的震測構造分析
(Seismic analysis of structures in the plate convergent zone between Taiwan and Luzon islands)
相關論文
★ 台灣基隆外海近海床地質構造與噴氣現象的探討★ 南海北部地殼構造與深海沈積物波之研究
★ 西菲律賓海盆西部的海床構造分析★ 南海北坡高解析水深調查與淺層地質的構造分析
★ 南海北部之磁力異常特徵分析★ 利用底質剖面儀及EK60聲納資料研究台灣北部近海的可能活動構造
★ 台灣恆春半島南部海域海底地形及構造研究★ 南海東北部海洋地殼構造之研究
★ 台灣地區岩石圈之浮力與重力位能的探討★ 以地震層析法推求台灣北部地區的速度構造並探討流體的可能分佈
★ 聯合尤拉解迴旋與解析訊號法求取磁源參數之研究★ 南海最北部地磁與地形之研究
★ 班達海岩心MD012380之磁學研究: 80萬年來赤道暖池區之古環境變遷★ 台灣至呂宋島間馬尼拉海溝的震測研究: 從正常隱沒到初期碰撞抬昇的上部地殼構造
★ 利用接收函數法分析台灣深部地殼構造★ 板塊邊界地震引起之重力位能變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 呂宋島到臺灣之間為聚合板塊帶的過渡區域,由南往北馬尼拉隱沒帶的正常隱沒環境已逐漸過渡為臺灣島的初始碰撞造山環境。為了更瞭解此區域的板塊聚合特徵的變化,本研究主要利用2009年TAIGER計畫由R/V Marcus G. Langseth研究船所收集的跨越馬尼拉海溝的多頻道反射震測和沿測線的多波數水深資料,以及R/V Ocean Researcher I的震測資料,探討呂宋到臺灣(18°45’N~21°45’N)海域在構造和沈積上的特徵與變化。
研究結果顯示有一組明顯的半遠洋沈積層序大規模分佈在南海海盆的頂層以及海溝中;在南段(18°45’N~20°N)的海溝區,此頂層層序之上覆蓋較厚的海溝濁流沈積物,但在北部頂層則呈被侵蝕的特徵。在南段的震測剖面(18°45’N~20°N)具有單純的板塊隱沒特徵,在海溝的前端先出現正斷層,甚至有切穿基盤面與海床面的大型正斷層。之後隨著板塊聚合,地層開始受擠壓而變形,越往島弧方向擠壓作用越劇烈。根據構造特徵,由西向東可依序將海溝區及楔形體畫分出六個子區域:正斷層區(Normal Fault Zone)、原逆衝斷層區(Proto-Thrust Zone, PTZ)、疊瓦狀逆衝斷層區(Imbricate Thrust Zone, ITZ)、前端脫序逆衝斷層區(Frontal Out-of-sequence thrust Zone, FOZ)、上部斜坡區(Upper Slope Zone)和背衝區(Back Zone)。海溝與基盤面的隱沒特徵在20.5°N以北變得不明顯;滑脫面構造也不明顯,取而代之的是海溝與楔形體底下出現掩埋的海底山和基盤面高區,增加隱沒的困難度。同時,構造楔形體內的PTZ寬度逐漸變窄,ITZ、FOZ往北變寬廣,而增積岩體的特色也由隱沒擦刮(offscarp)的特性,逐漸轉變為前陸盆地的沈積特色,覆蓋由臺灣造山帶而來的沈積物,這些現象顯示往北碰撞作用加劇。
隨著菲律賓海板塊西北向的聚合,北呂宋海槽的西緣都有地層被擠壓而抬昇(uplift)的現象,但東側的地層都很平靜;最南端的測線(~18°45’N)海槽西側的抬昇現象反應此處為正向聚合,但19°15’N以北海槽西側還有隆起(pop-up)及向西延(west-vergent)的逆衝斷層,顯示19°15’N以北北呂宋海槽西緣應受到斜向聚合的影響而同時有平移和壓縮的作用。由北呂宋海槽內地層變形的位置,顯示平移和壓縮作用產生的變形主要發生在北呂宋海槽西緣和構造楔形體東緣的交接處,而不是海槽東緣和呂宋島弧交接處。呂宋到臺灣之間北呂宋海槽西側的聚合為平移壓縮(transpression)的應力,此種平移壓縮的聚合應力系統應該可以沿北呂宋海槽的西緣向北延伸至臺灣島的花東縱谷位置。
摘要(英) The Eurasian plate (EP) and Philippine Sea plate (PSP) convergence in the region between Luzon and Taiwan islands gradually evolves from normal subduction to initial collision. In order to better understand the structural characteristics of the subduction-collision transition between Taiwan and Luzon islands, we have analyzed the multichannel reflection seismic data and multibeam bathymetry data collected by R/V Marcus G. Langseth in 2009 and by R/V Ocean Researcher I in 2003.
The results indicate a clear hemipelagic seismic sequence in the South China Sea (SCS) and Manila Trench. This sequence is dipping eastwards and is covered by thick trench-fill sediments in the south of the trench but has been eroded in the north. Structural analysis shows that the Manila Trench area can be distinguished by six structural zones: a normal fault zone (NFZ), a proto-thrust zone (PTZ), an imbricated thrust zone (ITZ), a frontal out-of sequence thrust zone (FOZ), an upper slope zone (USZ) and a back-thrust zone (BZ). Obvious subduction-related characteristics can be found in the south profiles between 18°45’N and 20°N, better than in the northern profiles between 20.5°N and 21°45’N. To the north, the décollement beneath the trench and frontal wedge is not clear and is disrupted by several buried seamounts or basement highs. Moreover, the width of PTZ becomes narrower, but ITZ and FOZ become wider. The subduction accretionary prism also gradually evolves into the foreland basin system receiving sediments from the Taiwan orogen.
Because of the strong convergence between PSP and EP, the uplift of stratigraphic strata has occurred at the west side of the North Luzon Trough (NLT). To the north of 19°15’N, pop-up, uplifted structures, and west-vergent thrusts can be observed in the west side of NLT from MCS and bathymetry data, which indicates both thrusting and left-lateral strike-slip faulting due to the oblique plate convergence. But the strata are relatively flat in the east side of NLT, suggesting that the plate deformation mostly happen to the west of Luzon volcanic arc. This transpressional convergence along the west side of NLT might extend to the southern Longitudinal Valley off SE Taiwan.
關鍵字(中) ★ 南中國海
★ 呂宋
★ 馬尼拉海溝
★ 臺灣
★ 反射震測
★ 板塊聚合
★ 馬尼拉隱沒帶
關鍵字(英) ★ Luzon
★ South China Sea
★ Taiwan
★ seismic reflection
★ plate convergence
★ Manila subduction zone
★ Manila trench
論文目次 中文摘要 i
ABSTRACT ii
致 謝 iii
圖目錄 vii
表目錄 ix
第一章 導 論 1
1.1 研究動機與目的 1
1.2 研究目標 3
1.3 研究方法 3
1.3.1 反射震測資料參數及處理流程簡述 3
1.3.2 水深資料 4
1.3.3 震源機制解用於構造解釋 5
1.4 研究架構 5
第二章 地體背景 10
2.1 地質單元與相鄰構造 10
2.1.1 南中國海盆 10
2.1.2 馬尼拉海溝 11
2.1.3 增積岩體 12
2.1.4 北呂宋海槽(弧前盆地) 15
2.1.5 呂宋島弧(火山島弧) 17
2.2 震源機制與地震活動分佈 18
2.3 馬尼拉隱沒帶(北段)的地殼變形特徵 19
2.4 研究區域的沈積特性 20
2.4.1 臺灣西南海域的沈積研究 20
2.4.2 南海北部深水區域沈積研究 21
2.5 研究區內沈積地層之年代 23
第三章 研究區的震測地層特徵 43
3.1 引言 43
3.2 海盆東緣至海溝區內之主要震測層序劃分 43
3.2.1 基盤面B 44
3.2.2 R1強反射面、底層沈積層 44
3.2.3 頂層沈積層(S) 45
3.2.4 中層沈積層 45
3.3 海盆東緣至海溝區的震測剖面解釋 45
3.3.1 各測線的地層特徵 46
3.3.2 海盆東緣至海溝區地層的分佈與意義 48
3.4 滑脫面構造分佈 48
3.4.1 滑脫面定義 48
3.4.2 研究區內滑脫面分佈 49
3.5 討論 49
3.5.1 研究區內滑脫面特性探討 50
3.5.2 馬尼拉北段由震測顯示的隱沒特徵 51
3.5.3 強反射面R1之沈積特徵與可能的地質年代 51
3.5.4 由頂層沈積物的特性探討其地質年代及構造意義 53
第四章 構造楔形體到弧前盆地的構造分析 70
4.1 前言 70
4.1.1 震源機制解分佈 70
4.1.2 沿反射震測測線的水深資料 71
4.2 馬尼拉海溝區北段增積岩體的構造特徵 71
4.2.1 逆衝斷層的定義 71
4.2.2 馬尼拉海溝區的北段至構造楔形體的斷層構造與分區 72
4.2.3 菲律賓左移斷層系統向馬尼拉海溝延伸的可能性 75
4.3 弧前盆地與火山島弧區域的構造特徵 75
4.3.1 北呂宋海槽的構造特徵 76
4.3.2 呂宋島弧弧內盆地(intra-arc basin)的構造特徵 78
4.4 討論 78
4.4.1 北呂宋海槽與呂宋島弧的構造特徵與板塊聚合之間的意義 79
4.4.2 海溝至增積岩體區內的構造區分佈 79
4.4.3 隱沒海底山、分歧斷層、FOOST與地震的空間分佈 80
第五章 結論 94
參考文獻 96
附錄一 古佳艷歷年著作 108
參考文獻 Bangs, N. L., S. P. S. Gulick and T. H. Shipley (2006). Seamount subduction erosion in the Nankai Trough and its potential impact on the seismogenic zone. Geology, 34, 701-704.
Bautista, B. C., M. L. P. Bautista, K. Oike, F. T. Wu and R. S. Punongbayan (2001). A new insight on the geometry of subducting slabs in northern Luzon, Philippines. Tectonophysics, 339, 279-310.
Boulay, S., C. Colin, A. Trentesaux, N. Frank and Z. Liu (2005). Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography Palaeoclimatology Palaeoecology, 228, 260-277.
Bowin, C., R. S. Lu, C.-S. Lee and H. Schouten (1978). Plate convergence and accrection in Taiwan-Luzon region. American Association of Petroleum Geologists Bulletin, 62, 1645-1672.
Briais, A., P. Patriat and P. Tapponnier (1993). Updated interpretation of magnetic anomalies and seafloor spreding stages in the South China Sea: Implicayions for the Teryiary tectonics of southeast Asia. Journal of Geophysical Research, 98, 6299-6328.
Cardwell, R. K., B. L. Isacks and D. E. Karig (1980). The spatial distribution of earthquakes, focal mechanism solutions, and subducted lithosphere in the Philippine and northeastern Indonesian islands, in The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, vol. 23, edited by D. E. Hayes, pp. 1-35. AGU, Washington, D. C.
Chen, C.-H., Y.-N. Shieh, T. Lee, C.-H. Chen and S. A. Mertzman (1990). Nd-Sr-O isotopic evidence for source contamination and an unusual mantle component under Luzon Arc. Geochimica Et Cosmochimica Acta, 54, 2473-2483.
Chen, M.-P. and W.-S. Junag (1986). Seafloor physiography off southeastern Taiwan. Acta Oceanographica Taiwanica, 16, 1-7.
Chen, S. C., S. K. Hsu, C. H. Tsai, C. Y. Ku, Y. C. Yeh and Y. S. Wang (2011). Gas seepage, pockmarks and mud volcanoes in the near shore of SW Taiwan. Marine Geophysical Researches, 31, 133-147.
Chi, W.-C., D. L. Reed, G. Moore, T. Nguyen, C.-S. Liu and N. Lundberg (2003). Tectonic wedging along the rear of the offshore Taiwan accretionary prism. Tectonophysics, 374, 199-217.
Chi, W.-C. and D. L. Reed (2008). Evolution of shallow, crustal thermal structure from subduction to collision: An example from Taiwan. Geological Society of America Bulletin, 120, 679-690.
Chiang, C.-S., H.-S. Yu and Y.-W. Chou (2004). Characteristics of the wedge-top depozone of the southern Taiwan foreland basin system. Basin Research, 16, 65-78.
Chiu, J. K. and C. S. Liu (2008). Comparison of sedimentary processes on adjacent passive and active continental margins offshore of SW Taiwan based on echo character studies. Basin Research, 20, 503-518.
Cloos, M. (1992). THRUST-TYPE SUBDUCTION-ZONE EARTHQUAKES AND SEAMOUNT ASPERITIES - A PHYSICAL MODEL FOR SEISMIC RUPTURE. Geology, 20, 601-604.
Collot, J. Y., W. Agudelo, A. Ribodetti and B. Marcaillou (2008). Origin of a crustal splay fault and its relation to the seismogenic zone and underplating at the erosional north Ecuador-south Colombia oceanic margin. Journal of Geophysical Research-Solid Earth, 113.
Covey, M. (1984). Lithofacies analysis and basin reconstruction, Plio-Pleistocene western Taiwan foredeep. Petrol. Geol. Taiwan, 20, 53-83.
DeCelles, P. G. and K. A. Giles (1996). Foreland basin systems. Basin Research, 8, 105-123.
Fuh, S.-C., C.-S. Liu and G.-S. Song (1994). Decoupled transcurrent faults in the offshore area south of Taiwan. Pet. Geol. Taiwan, 29, 27-46.
Fuh, S.-C., C.-S. Liu, N. Lundberg and D. L. Reed (1997). Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes. Tectonophysics, 274, 25-39.
Fuh, S.-C. and C.-S. Liu (1998). Evolution of The Southern Longitudinal Trough In theincipient Taiwan arc-continent collision zone and its tectonic implication. J. Geol. Soc. China, 41, 497-516.
Galgana, G., M. Hamburger, R. McCaffrey, E. Corpuz and Q. Z. Chen (2007). Analysis of crustal deformation in Luzon, Philippines using geodetic observations and earthquake focal mechanisms. Tectonophysics, 432, 63-87.
Hamburger, M. W., R. K. Cardwell and B. L. Isacks (1983). Seismotectonics of the northern Philippine island arc, in The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, vol. 27, edited by D. E. Hayes, pp. 1-22. AGU, Washington, D. C.
Hayes, D. E. and W. J. Ludwig (1967). The Manila Trench and West Luzon Trough--II. Gravity and magnetics measurements. Deep Sea Research and Oceanographic Abstracts, 14, 545-560.
Hayes, D. E. and S. D. Lewis (1984). A geophysical study of the Manila Trench, Luzon, Philippines, 1, Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research, 89, 9171-9195.
Hirtzel, J., W. C. Chi, D. Reed, L. W. Chen, C. S. Liu and N. Lundberg (2009). Destruction of Luzon forearc basin from subduction to Taiwan arc-continent collision. Tectonophysics, 479, 43-51.
Ho, C.-S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 99, 381-397.
Ho, C.-S. (1988). An introduction to the geology of Taiwan: Explanatory text for the geologic map of Taiwan. Minist. Econ. Aff., Taipei, 2nd ed., 164 pp.
Hsiung, K.-H. and H.-S. Yu (2011). Morpho-sedimentary evidence for a canyon–channel–trench interconnection along the Taiwan–Luzon plate margin, South China Sea. Geo-Marine Letters, 1-12.
Hsu, S. K. and J. C. Sibuet (1995). Is Taiwan the result of arc-continent or arc-arc collision? Earth and Planetary Science Letters, 136, 315-324.
Hsu, S. K., C. S. Liu, C. T. Shyu, S. Y. Liu, J. C. Sibuet, S. Lallemand, C. S. Wang and D. Reed (1998). New gravity and magnetic anomaly maps in the Taiwan-Luzon region and their preliminary interpretation. Terrestrial Atmospheric and Oceanic Sciences, 9, 509-532.
Hsu, S. K., Y. C. Yeh, W. B. Doo and C. H. Tsai (2004). New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Marine Geophysical Researches, 25, 29-44.
Hsu, S. K., J. Kuo, C. L. Lo, C. H. Tsai, W. B. Doo, C. Y. Ku and J. C. Sibuet (2008). Turbidity currents, submarine landslides and the 2006 Pingtung earthquake off SW Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 19, 767-772.
Huang, C.-Y. and Y.-C. Yin (1990). Bathymetric ridges and troughs in the active arc-continent collision region off southeastern Taiwan. J. Geol. Soc. China, 33, 351-372.
Huang, C.-Y., C.-T. Shyu, S. B. Lin, T.-Q. Lee and D. D. Sheu (1992). Marine geology in the arc-continent collision zone off southeastern Taiwan: Implications for late Neogene evolution of the Coastal Range. Marine Geology, 107, 183-212.
Huang, C.-Y. (1993). Bathymetric ridges and troughs in the active arc-continent collision region off southeastern Taiwan: Reply and discussions. J. Geol. Soc. China, 36, 91-109.
Huang, C.-Y., P. B. Yuan and S.-J. Tsao (2006). Temporal and spatial records of active arc-contient collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118, 274-288.
Huang, C. Y., P. B. Yuan, S. R. Song, C. W. Lin, C. S. Wang, M. T. Chen, C. T. Shyu and B. Karp (1995). Tectonics of short-lived intraarc basin in the arc-continent collision terrane of the Coastal Range, eastern Taiwan. Tectonics, 14, 19-38.
Huang, C. Y., W. Y. Wu, C. P. Chang, S. Tsao, P. B. Yuan, C. W. Lin and K. Y. Xia (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics, 281, 31-51.
Hyndman, R. D., K. Wang and M. Yamano (1995). Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J. Geophys. Res., 100, 15373-15392.
Kao, H., S.-s. J. Shen and K.-F. Ma (1998). Transition from oblique subduction to collision: Earthquakes in the southernmost Ryukyu arc-Taiwan region. Journal of Geophysical Research, 103, 7211-7229.
Kao, H., G.-C. Huang and C.-S. Liu (2000). Transition from oblique subduction to collision in the northern Luzon arc-Taiwan region: Constraints from bathymetry and seismic observations. Journal of Geophysical Research, 105, 3059-3079.
Karig, D. E. (1971). Origin and Development of Marginal Basins in the Western Pacific. J. Geophys. Res., 76, 2542-2561.
Karig, D. E. (1983). Accreted terranes in the northern part of the Philippine Archipelago. Tectonics, 2, 211-236.
Kimura, G., Y. Kitamura, Y. Hashimoto, A. Yamaguchi, T. Shibata, K. Ujiie and S. y. Okamoto (2007). Transition of accretionary wedge structures around the up-dip limit of the seismogenic subduction zone. Earth and Planetary Science Letters, 255, 471-484.
Ku, C.-Y. and S.-K. Hsu (2009). Crustal structure and deformation at the northern Manila Trench between Taiwan and Luzon islands. Tectonophysics, 466, 229-240.
Lüdmann, T. and H. K. Wong (1999). Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophysics, 311, 113-138.
Lüdmann, T., H. K. Wong and K. Berglar (2005). Upward flow of North Pacific Deep Water in the northern South China Sea as deduced from the occurrence of drift sediments. Geophysical Journal International, 32, L05614.
Lewis, S. D. and D. E. Hayes (1984). A geophysical study of the Manila Trench, Luzon, Philippines, 2, Fore arc basin structural and stratigraphic evolution. Journal of Geophysical Research, 89, 9196-9214.
Li, C.-F., Z. Zhou, J. Li, H. Hao and J. Geng (2007). Structures of the northeastermost South China Sea continental margin and ocean basin: Geophysical constraints and tectonic implications. Marine Geophysical Research, 28, 59-79.
Lin, A. T., A. B. Watts and S. P. Hesselbo (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453-478.
Lin, A. T., C. S. Liu, C. C. Lin, P. Schnurle, G. Y. Chen, W. Z. Liao, L. S. Teng, H. J. Chuang and M. S. Wu (2008). Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: An example from Taiwan. Marine Geology, 255, 186-203.
Lin, A. T., B. C. Yao, S. K. Hsu, C. S. Liu and C. Y. Huang (2009). Tectonic features of the incipient arc-continent collision zone of Taiwan: Implications for seismicity. Tectonophysics, 479, 28-42.
Liu, C.-S., I.-L. Huang and L. S. Teng (1997). Structural features off southwestern Taiwan. Marine Geology, 137, 305-319.
Liu, C.-S., P. Schnürle, Y. Wang, S.-H. Chung, S.-C. Chen and T.-H. Hsiuan (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17, 615-644.
Liu, C. S., B. Deffontaines, C. Y. Lu and S. Lallemand (2004). Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Marine Geophysical Researches, 25, 123-137.
Liu, Z., C. Colin, X. Li, Y. Zhao, S. Tuo, Z. Chen, F. P. Siringan, J. T. Liu, C.-Y. Huang, C.-F. You and K.-F. Huang (2010). Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277, 48-60.
Lo, C.-H., T. C. Onstott, C.-H. Chen and T. Lee (1994). An assessment of dating for the whole-rock volcanic samples from the Luzon Arc near Taiwan. Chemical Geology, 114, 157-178.
Ludwig, W. J., D. E. Hayes and J. I. Ewing (1967). The Manila Trench and West Luzon Trough--I. Bathymetry and sediment distribution. Deep Sea Research and Oceanographic Abstracts, 14, 533-544.
Ludwig, W. J. (1970). The Manila Trench and West Luzon Trough--III. Seismic-refraction measurements. Deep Sea Research and Oceanographic Abstracts, 17, 553-562, IN13, 563-571.
Lundberg, N., D. L. Reed, C.-S. Liu and J. Lieske (1992). Structural controls on orogenic sedimentation, submarine Taiwan collision. Acta Geologica Taiwanica, 30, 131-140.
Lundberg, N., D. L. Reed, C.-S. Liu and J. Lieske (1997). Forearc-basin closure and arc accretion in the submarine suture zone south of Taiwan. Tectonophysics, 274, 5-23.
MacKay, M. E., G. F. Moore, G. R. Cochrane, J. C. Moore and L. V. D. Kulm (1992). Landward vergence and oblique structural trends in the Oregon margin accrectionary prism: Implications and effect on fluid flow. Earth and Planetary Science Letters, 109, 477-491.
McIntosh, K., Y. Nakamura, T. K. Wang, R. C. Shih, A. Chen and C. S. Liu (2005). Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics, 401, 23-54.
Moore, G. F., A. Taira, A. Klaus, L. Becker, B. Boeckel, B. A. Cragg, A. Dean, C. L. Fergusson, P. Henry, S. Hirano, T. Hisamitsu, S. Hunze, M. Kastner, A. J. Malkman, J. K. Morgan, Y. Murakami, D. M. Saffer, M. Sanchez-Gomez, E. J. Screaton, D. C. Smith, A. J. Spivack, J. Steurer, H. J. Tobin, K. Ujiie, M. B. Underwood and M. Wilson (2001). New insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: Results of Ocean Drilling Program Leg 190. Geochemisty, Geophysics, Geosystem, 2, 2001GC000166.
Moore, G. F., N. L. B. Bangs, A. Taira, S. Kuromoto, E. M. Pangborn and H. J. Tobin (2007). Three-dimensional splay fault geometry and implications for tunami generation. Science, 318, 1128-1131.
Moore, J. C., A. Klaus, N. L. Bangs, B. Bekins, C. J. Bucker, W. Bruckmann, S. N. Erickson, O. Hansen, T. Horton, P. Ireland, C. O. Major, G. F. Moore, S. Peacock, S. Saito, E. J. Screaton, J. W. Shimeld, P. H. Stauffer, T. Taymaz, P. A. Teas and T. Tokunaga (1998). Consolidation patterns during initiation and evolution of a plate-boundary decollement zone: Northern Barbados accretionary prism. Geology, 26, 811-814.
Morgan, J. K. and D. E. Karig (1995). Kinematics and a balanced and restored cross-section across the toe of the eastern Nankai accrectionary prism. Journal of Structural Geology, 17, 31-45.
Morley, C. K. (1988). Out-of-Sequence Thrusts. Tectonics, 7, 539-561.
Neuendorf, K. K. E., J. P. Mehl and J. A. Jackson (2005). Glossary of Geology. American Geological Institute, Alexandria, Virginia, 5th ed., 779 pp.
Park, J.-O., T. Tsuru, S. Kodaira, A. Nakanishi, S. Miura, Y. Kaneda, Y. Kono and N. Takahashi (2000). Out-of-sequence thrust faults in the coseismic slip zone of the 1946 Nankai earthquake (Mw=8.2) off Shikoku, southwest Japan. Geophysical Research Letters, 27, 1033-1036.
Park, J.-O., T. Tsuru, S. Kodaira, P. R. Cummins and Y. Kaneda (2002). Splay fault branching along the Naikai subduction zone. Science, 297, 1157-1160.
Pautot, G. and C. Rangin (1989). Subduction of the South China Sea axial ridge below Luzon (Philippines). Earth and Planetary Science Letters, 92, 57-69.
Rangin, C., X. Le Pichon, S. Mazzotti, M. Pubellier, N. Chamotrooke, M. Aurelio, A. Walpersdorf and R. Quebral (1999). Plate convergence measured by GPS across the Sundaland/Philippine sea plate deformed boundary: the Philippines and eastern Indonesia. Geophysical Journal International, 139, 296-316.
Reed, D. L., N. Lundberg, C.-S. Liu and B.-Y. Kuo (1992). Structural relations along the margins of the offshore Taiwan accretionary wedge: Implications for accretion and crustal kinematics. Acta Geologica Taiwanica, 30, 105-122.
Scholz, C. H. and C. Small (1997). The effect of seamount subduction on seismic coupling. Geology, 25, 487-490.
Sibuet, J. C. and S. K. Hsu (1997). Geodynamics of the Taiwan arc-arc collision. Tectonophysics, 274, 221-251.
Sibuet, J. C., S. K. Hsu, X. Le Pichon, J. P. Le Formal, D. Reed, G. Moore and C. S. Liu (2002). East Asia plate tectonics since 15 Ma: constraints from the Taiwan region. Tectonophysics, 344, 103-134.
Stern, R. J. (2002). Subduction zones. Reviews of Geophysics, 40, 1012.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the geological society of China, 4, 67-89.
Taylor, B. and D. E. Hayes (1980). The tectonic evolution of the South China Sea, in The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Geophysical Monographies Series, edited by D. E. Hayes, pp. 89-104. AGU, Washington, D. C.
Taylor, B. and D. E. Hayes (1983). Origin and history of South China Sea, in The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2, Geophysical Monographies Series, vol. 27, edited by D. E. Hayes, pp. 23-56. AGU, Washington, D. C.
Teng, L. S. (1987). Geotectonic evolution of late Cenozoic Penglai Orogeny of Taiwan. Acta Geologica Taiwanica, 25, 205-224.
Teng, L. S. (1990). Geotectonuc evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183, 57-76.
Trentesaux, A., Z. Liu, C. Colin, S. Boulay and P. Wang (2003). Data report: Pleistocene paleoclimatic cyclicity of southern China: clay mineral evidence recorded in the South China Sea (ODP Site 1146), in Proc. ODP, Sci. Results, 184, edited by W. L. Prell, P. Wang, P. Blum, D. K. Rea and S. C. Clemens, College Station, TX (Ocean Drilling Program).
Tsai, C. H., S. K. Hsu, Y. C. Yeh, C. S. Lee and K. Y. Xia (2004). Crustal thinning of the northern continental margin of the South China Sea. Marine Geophysical Researches, 25, 63-78.
Tsai, Y.-B. (1986). Seismotectonics of Taiwan. Tectonophysics, 125, 17-37.
Underwood, M. B. and G. F. Moore (1995). Trenches and trench-slope basins, in Tectonics of sedimentary basins, edited by C. J. Busby and R. V. Ingersill, pp. 179-219. Blackwell Science, Malden, Mass.
von Huene, R., C. R. Ranero, W. Weinrebe and K. Hinz (2000). Quaternary convergent margin tectonics of Costa Rica, segmentation of the Cocos Plate, and Central American volcanism. Tectonics, 19, 314-334.
Wang, P. (1999). Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Marine Geology, 156, 5-39.
Wang, P., W. L. Prell and P. Blum (2000a). Proceedings of the Ocean Drilling Program, Initial Report, pp. 77.
Wang, P., W. L. Prell and P. Blum (2000b). Proc. ODP, Init. Repts. 184. College Station, TX (Ocean Drilling Program).
Watts, A. B. and M. Talwani (1974). Gravity anomalies seaward of deep sea trenches and their tectonic implications. Geophys. J. R. Astron. Soc., 36, 57-90.
Wu, W.-N., H. Kao, S.-K. Hsu, C.-L. Lo and H.-W. Chen (2010). Spatial variation of the crustal stress field along the Ryukyu-Taiwan-Luzon convergent boundary. Journal of Geophysical Research-Solid Earth, 115, 19.
Yang, T. F., T. Lee, C. H. Chen, S. N. Cheng, U. Knittel, R. S. Punongbayan and A. R. Rasdas (1996). A double island arc between Taiwan and Luzon: Consequence of ridge subduction. Tectonophysics, 258, 85-101.
Yeh, Y.-C., J.-C. Sibuet, S.-K. Hsu and C.-S. Liu (2010). Tectonic evolution of the Northeastern South China Sea from seismic interpretation. Journal of Geophysical Research-Solid Earth, 115.
Yeh, Y. C. and S. K. Hsu (2004). Crustal structures of the northernmost South China Sea: Seismic reflection and gravity modeling. Marine Geophysical Researches, 25, 45-61.
Yen, J.-Y. and N. Lundberg (2006). Sediment compositions in offshore southern Taiwan and their relations to the source rocks in modern arc-continent collision zone. Marine Geology, 225, 247-263.
Yu, H.-S. (2000). Closure of Manila Trench north of Latitude 21°N in transition of passive-convergent margin south of Taiwan. Acta Oceanographica Taiwanica, 38, 115-127.
Yu, H.-S. and E. Hong (2006). Shifting submarine canyons and development of a foreland basin in SW Taiwan: controls of foreland sedimentation and longitudinal sediment transport. Journal of Asian Earth Sciences, 27, 922-932.
Yu, H.-S. and Z.-Y. Huang (2006). Intraslope basin, seismic facies and sedimentary processes in the Kaoping Slope, offshore southwestern Taiwan. Terrestrial Atmospheric and Oceanic Sciences, 17, 659-677.
Yu, H.-S. and Z.-Y. Huang (2009). Morphotectonics and sedimentation in convergent margin basins: An example from juxtaposed marginal sea basin and foreland basin, Northern South China Sea. Tectonophysics, 466, 241-254.
Yu, S.-B., L.-C. Kuo, R. S. Punongbayan and E. G. Ramos (1999). GPS observation of crustal deformation in the Taiwan-Luzon region. Geophysical Research Letters, 26, 923-926.
Yu, S.-B., Y.-J. Hsu, T. Bacolcol, C.-C. Yang, Y.-C. Tsai and R. Solidum (2011). Present-day crustal deformation along the Philippine Fault in Luzon, Philippines. Journal of Asian Earth Sciences, In Press, Corrected Proof.
蔡慶輝(2007)南海北部地殼構造與深海沈積物波之研究。國立中央大學地球物理研究所博士論文, 臺灣中壢, 共188頁。
陳冠廷(2009)南海北坡高解析水深調查與淺曾地質的構造分析。國立中央大學地球物理研究所碩士論文, 臺灣中壢, 共138頁。
指導教授 許樹坤(Shu-Kun Hsu) 審核日期 2011-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明