博碩士論文 93642004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.239.176.54
姓名 吳泓昱(Hung-Yu Wu)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 車籠埔斷層於台灣大坑井區域之物理參數特性及應力場異質性之模擬
(Physical Properties and Modeling Stress Heterogeneity in Chelungpu Fault Vicinity Dakeng, TAIWAN)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣車籠埔鑽井計畫於大坑鑽掘了兩口兩公里的科學鑽探井,並於井孔中500 至1900公尺處施測了地球物理井下測量。為了標定剪力區的位置,我們檢視了波速 資料和密度和電阻率等資料,發現剪力區內的波速和電阻率皆有降低的趨勢。而在 1111公尺的剪力區,藉由其波速和密度的最大變化。界定為最有可能和1999年集集 大地震所造成的車籠埔斷層於錦水頁岩內的滑動相關連。而因應力變化所造成的井 壁崩蹋可由井壁影像紀錄中觀測得知,依此資料可確認其井下平均應力場的方向為 東南155度向西北,
和台灣主要的大地應力方向平行。而雙偶聲波井測的測量結果 得知最大的應力方向變化發生於1110公尺處,也和井壁影像紀錄相符合。
井測的資料顯示了在靠近斷層帶的應力方向,和大地應力方向相比,有將近 90度的旋轉。我們使用水力破裂實驗加以測量井孔中不同位置的最小水平主軸應力 的量值。藉由我們所建構的應力旋轉模型,模擬地震發生前和地震發生後的應力規 模和方向。模擬的結果得知,地震前之水平主軸應力量值約略相同(45Mpa),而遠 大於垂直應力(26MPa)。而地震後最大水平應力方向有將近90度的顯著旋轉,造成 最大水平主軸應力和最小主軸應力互換。而低摩擦係數的參數設定和完全的應力釋 放也解釋了車籠埔斷層在我們模擬的區間範圍內為一弱斷層。
而在井孔的幾何參數上,斷層帶上的摩擦係數也是影響應力規模的重要因素之 一。在模型中得知摩擦係數0.4遠低於Byerlee’s law的範圍(0.6~1)。低摩擦係數的 發現也暗示我們在斷層錯動時可能存在高孔隙水壓並潤滑斷層的動態破裂過程,也 因此造成車籠埔斷層北端有較高的錯動量。 而在考慮其區域尺度的應力影響(500公尺x500公尺),以及近乎完全的應力釋 放下,才會得到符合裂隙閉鎖試驗的結果。而此結果也可解釋由於破裂後最大水 平應力90度的方向轉變,車籠埔斷層由主要的南北破裂轉成東西向的破裂。
摘要(英) The Taiwan Chelungpu-fault Drilling Project (TCDP) drilled a 2-km-deep research borehole in Dakeng, Taiwan. Geophysical logs of the TCDP were carried out over depths of 500–1900 m in two boreholes. In order to identify the shear zones, a shear zone at a depth of 1110 meters is interpreted to be the Chelungpu fault, located within the Chunshui shale. Stress-induced borehole breakouts were observed over nearly the entire length of the wellbore from image logs (FMI). These data show an overall stress direction (~N115°E) that is essentially parallel to the regional stress field and parallel to the tectonic stress direction. The Dipole Sonic logs (DSI) also analyzed in this study, the data shows that the most dislocation of fast shear azimuth is close to the depth 1110 meters and consistence with the borehole breakout rotation.
The logging data show that near the fault, the azimuth of the maximum horizontal principal stress (SHMAX) changes by about 90o from the regional tectonic stress direction (N130oE). Hydraulic fracturing tests were used to determine the magnitude of the minimum principal stress (S3) at multiple depths. Through dislocation modeling, we simulated the abrupt stress rotation observed in the image logs at the depth of the Chelungpu Fault. In addition, the modeling indicates that the magnitudes of the minimum horizontal principal stress Shmin changed markedly during the earthquake. In order for the co-seismic stress changes to result in a ~90o stress rotation near the fault, the state of stress prior to the earthquake had to have been a reverse faulting stress regime (as expected), but with SHMAX ≈ Shmin >>Sv. The modeling in the stresses with low frictional coefficient and a near complete stressdrop after the earthquake suggests a weak Chelungpu fault, at least in the northern part of the fault.
關鍵字(中) ★ 車籠埔斷層鑽井計畫
★ 應力
★ 井孔崩遢
關鍵字(英) ★ TCDP
★ Stress
★ Borehole breakout
論文目次 Chapter 1: Introduction 1
1.1 Overview 1
1.2 The 1999 Chi-Chi earthquake and tectonic setting of Chelungu-fault in the central Taiwan 3
1.3 Active Fault drilling project around the world 5
1.3.1 Taiwan Chelungpu-fault Drilling Project 5
1.3.2 Nojima Fault Zone Probe 7
1.3.2 San Andreas Fault Observatory at Depth 8
1.4 Stress orientation and magnitude estimation in the borehole 9
1.5 Thesis outline 11
Chapter2: Stress Orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as Observed from Geophysical Logs 15
2.1 Introduction 16
2.2 Borehole breakout and fracture orientation from image logs 18
2.3 Physical properties from geophysical logs 21
2.4 Conclusions 23
Chapter 3 : Anisotropy analysis from Diple Sonic log (DSI) in TCDP 31
3.1 Introduction 32
3.2 Dipole Sonic Imager data 33
3.3 S wave anisotropy 34
3.4. Anisotropy Result along the borehole 35
3.5. Discussions and Conclusions 35
Chapter 4: Observations and Modeling of Co-seismic Stress Changes in the M7.6 Chi-Chi Earthquake Taiwan – Apparent Evidence for Complete Stress Drop on a Small Fault Patch 37
4.1. Introduction 38
4.2. Physical properties from geophysical logs 40
4.3. Stress orientation and magnitude after the earthquake 41
4.3.1 Borehole breakout azimuth and width in drill site 41
4.3.2 Hydraulic fracturing tests 43
4.3.3 Constraining SHMAX 45
4.4. Modeling the stress anomaly near the Chelungpu fault 47
4.5. Discussion and Conclusion 51
Chapter 5: Conclusions and the further approach 67
5.1 Conclusions 67
5.2 Seismic Anisotropy in the Crust near drilling site 70
Reference: 80
Appendix. A: Estimate the unconfined compressive strength 86
Appendix. B: Hydraulic fracturing test in TCDP borehole 88
Appendix. C: The orientation of borehole seismometers array 91
Appendix. D: Detail anisotropy analysis in 2 events 96
Appendix. E: Introductions and Conclusions in Chinese 111
參考文獻 Anderson, E.M., The dynamics of faulting and Dyke Formation with Applications to Britain. Edinburgh, Oliver and Boyd, 1951
Anglier, J., Determination of the mean principal stresses for a given fault population, Tectonophysics, 56, pp. T17–T26, 1979
Barton, C.A., M.D. Zoback, and K.L. Burns, In situ stress orientation and magnitude at the Fenton geothermal site, New Mexico, determined from wellbore breakouts, Geophys. Res. Lett., 15, 467-470, 1988
Barton, C.A. and M.D. Zoback, Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement, Jour. Geophys. Res., 99, 9373-9390, 1994
Bell, J.S., and D. I. Gough, Northeast-southwest compressive stress in Alberta--Evidence from oil wells, Earth and Planetary Science Letters, v. 45, p. 475-482, 1979
Boness, N. L., and M. D. Zoback, Stress-induced seismic velocity anisotropy and physical properties in the SAFOD pilot hole in Parkfield, CA, Geophys. Res. Lett., 31, L15S17, doi:10.1029/2003GL019020, 2004
Byerlee, J.D., “Friction of rocks”, Pure and Applied Geophysics, 116, 615-629, 1978
Barton, C.A. and M.D. Zoback, Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement, Jour. Geophys. Res., 99, 9373-9390, 1994
Brodsky, E. E., and H. Kanamori, Elastohydrodynamic lubrication of faults. J. Geophys. Res., 106, 16367-16374, 2001
Brune, J. N., S. Brown, and P. A. Johnson, Rupture mechanism and interface separation in foam rubber models of earthquakes: A possible solution to the heat flow paradox and the paradox of large overthrusts. Tectonophysics, 218, 59-67., 1993
Chen, S.T, Shear-wave logging with dipole source, Geophysics, 53, 659-667, 1988
Chang, C., M.D. Zoback and A. Khaksar, Rock strength and physical property measurements in sedimentary rocks, Journal of Petroleum Sci. and Engineering, 51, 223-237, 2006
Chen, C-W., The study of mechanical characteristics from the host rock of Chlengpu fault (in Chinese with English abstract), M.S. Thesis, National Taiwan University, Taipei, Taiwan, 2005
Cramoins, S., Wave propagation through fluid-filled inclusions of various shapes: interpretation of extensive dilatancy: Geophys. J. Int., 107, 611-623, 1991
DeMets C., Gordon R.G., Argus D.F. and Stein F., Current plate motions., Geophysics Journal International, 101, 425-478, 1990
Di Toro, G., D. L. Golbsby, and T. E. Tullis, Friction falls toward zero in quartz rock as slip velocity approaches seismic rates. Nature, 427, 436-439, 2004
Esmersoy, C., Koster, K., Williams, M, Boyd, A., and Kane, M., Diapole shear anisotropy logging, 64th SEG Annual Meeting Expanded Abstract, Los Angeles, 1994
Ekstrom, M. P., C. A. Dahan, M. Y. Chen, P. M. Lloyd, and D. J. Rossi, Formation imaging with microelectrical scanning arrays. the Log Anal. 28, 294-306, 1987
Galperin, E. I., Azimuthal method of seismic observations, Moscow, Gostoptechizdat 80, 1955
Gripp A. E. and R.G. Gordon, Young tracks of hotspots and current plate velocities young tracks of hotspots and current plate velocities, Geophysical Journal International, 150, pp. 321–361, 2002
Haimson, B. and C. Fairhurst , Initiation and extension of hydraulic fracture in rocks. SPE 1710, Society of Petroleum Engineers, pp. 310–318 Sep., 1967
Hickman, S., and Mark D. Zoback, The Interpretation of Hydraulic Fracturing Pressure-Time Data for in-situ Stress Determination, National Academy Press, Washington D.C., p. 44-54, 1983
Hickman, S., M.D. Zoback, C. A. Barton, R. Benoit, J. Svitek and R. Summers, Stress and Permeability Heterogeneity within the Dixie Valley Geothermal Reservoir: Recent Results from Well 82-5, 25th, workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, January 24-26, 2000.
Hickman S. and Mark D. Zoback, Stress orientation and magnitude in the SAFOD pilot hole, Geophys. Res. Lett., 31, L15S12. doi:10.1029/2004GL020043, 2004
Hung, J. H., Y. H. Wu, E. C. Yeh, J. C. Wu, and TCDP Scientific Party, Subsurface structure, physical properties, and fault zone characteristics in the scientific drill holes of Taiwan Chelungpu-fault Drilling Project. Terr. Atmos. Ocean. Sci., 18, 271-293, doi: 10.3319/TAO.2007.18.2.271(TCDP), 2007
Hubbert M. K. and Willis, D. G., Role of fluid pressure in mechanis of over thrust fsulting, Geol. Soc. Am. Bull., 70, 115-205, 1957
Hsu, Y. J., M. Simons, S. B. Yu, L. C. Kuo, and H. Y. Chen, A two-dimensional dislocation model for interseismic deformation of the Taiwan mountain belt, Earth Planet. Sci. Lett., 211, 287-294, 2003
Jaeger, J.C., and Cook, N.C. W., Fundamentals of rock mechanics: Halsted Press, 1977
Jaeger, J.C., and N.G.W Cook, Fundamentals of Rock Mechanics, 2nd ed., pp. 585 , Chapman and Hall, London, 1976
Ji, C., D. V. Helmberger, D. J. Wald, and Kuo-Fong Ma, Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B9), 2412, doi:10.1029/2002JB001764, 2003
Kanamori, H. and T.H. Heaton, Microscopic and macroscopic physics of earthquakes, AGU Monograph 120, pp. 147-163, 2000
Kao H. and J. Angelier, Stress Tensor Inversion for the Chi-Chi Earthquake Sequence and its Implications on Regional Collision, Bulletin of the Seismological Society of America, 91, no.5, pp. 1028-1040, 2001
Kao, H., Y.-H. Liu, W.-T. Liang, and W.-P. Chen, Source parameters of regional earthquakes in Taiwan: 1999 – 2000 including the Chi-Chi earthquake
sequence, Terr. Atmos. Oceanic Sci., 13, 279– 298, 2002
Kao, H., and W. P. Chen, The Chi-Chi earthquake sequence: active out-of-sequence thrust faulting in Taiwan. Science, 288, 2346-2349, 2000
Kirsch. G., Die Theorie der Elastizitat und die Bedurfnisse der Festigkeitslehre, Zeitschrift des Verlines Deutscher Ingenieure, 42, 707, 1898
Lin, T. S., S. M. Wang, J. H. Hung, M. S. Wu, C. S. Lin, Stratigraphy and geology of the Taiwan Chelungpu-fault Drilling Project-A borehole and its neighboring region, central Taiwan, submitted to Terr. Atmos and Oceanic Sci., 18(2), 223-241, 2007
Lee, J.C., H. T. Chu, J. Angelier, Y. C. Chan, J. C. Hu, C. Y. Lu, R. J. Rau, Geometry and structure of northern surface ruptures of the 1999 Mw = 7.6 Chi-Chi Taiwan earthquake: influence from inherited fold belt structures, Journal of Struct. Geology, 24., 173-192, 2002
Lockner, D.A., and N.M. Beeler, Chapter 32, in International Handbook of Earthquake and Engineering Seismology , edited by W.H.K. Lee, H. Kanamori, P.C. Jennings, and C. Kisslinger, pp. 505-537, Academic Press, Amsterdam, 2002
Lin, A. T., S. M. Wang, J. H. Hung, M. S. Wu, and C. S. Liu, Lithostratigraphy of the Taiwan Chelungpu-fault Drilling Project-A borehole and its neighboring regime, central Taiwan, Terr. Atmos. Oceanic Sci., 18, 223– 241, doi:10.3319/TAO.2007.18.2.223(TCDP), 2007
Lin W., E.-C. Yeh, H. Ito, J.-H. Hung, T. Hirono, W. Soh, K.-F. Ma, M. Kinoshita, C.-Y. Wang, S.-R. Song, Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake, Geophys. Res. Lett., 34, L16307, doi:10.1029/2007GL030515, 2007
Ma, K.-F. C.T. Lee, Y.B. Tsai, T.C. Shin and J. Mori, The 1999 ChiChi, Taiwan (ML=7.3, Mw=7.7) Earthquake - Large Surface Displacement on an Inland Thrust-fault, 
EOS, 80, 605-611, 1999
Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F. Song, E.-C. Yeh, W. Soh, H. Sone, L.-W. Kuo and H.-Y. Wu., Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project, Nature, 444, 473-476, doi10.1038/nature05253, 2007
Ma, K.-F., J. Mori, S.-J. Lee and S. B. Yu, Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan Earthquake, Bull. Seismo. Soc. Am., 91, 1069-1087, 2001
Moos, D. and M.D. Zoback, Utilization of observations related to wellbore failure to constrain the orientation and magnitude of crustal stresses: Application to continental, DSDP and ODP boreholes, J. Geophys. Res., 95, 9305-9325, 1990
Ma, K. F., E. E. Brodsky, J. Mori, C. Ji, T. R. A. Song, and H. Kanamori, Evidence for fault lubrication during the 1999 Chi-Chi, Taiwan, earthquake (Mw 7.6). Geophys. Res. Lett., 30, 1244, doi: 10.1029/2002GL015380, 2003
Pezard, P. A., Borehole electrical images the basement of the cajon pass scientfic drillhole, California; Fracture Identification and tectonic implications, Geophys. Res. Lett, 15, 1017-1020, 1988
Plumb, R. A. and S. H. Hickman, Stress-induced borehole elongation: A comparison between the four-arm dip meter and the borehole telviewer in the Auburn geothermal well, Journal of geophysical Research, 90, 5513-5521, 1985
Phil Armstrong, The Promise of Elastic Anisotropy, Oilfield Review, 1994
Shih, X. R., R. P. Meyer, and J. F. Schneider, An automated and analytical method to determine shear wave splitting, Tectonophysics 165, 271–278, 1989
Seno, T, The instantaneous rotation vector of the Philippine Sea Plate relative
to the Eurasian Plate, Tectonophys., 42, 209-226, 1977
Shamir, G., and M.D. Zoback, Stress orientation profile to 3.5 km depth near the San Andreas fault at Cajon Pass, California, J. Geophys. Res., 97, 5059-5080, 1992
Shamir, G., M.D. Zoback and C.A. Barton, In situ stress orientation near the San Andreas fault: Preliminary results to 2.1 km depth from the Cajon Pass scientific drillhole, Geophys. Res. Lett. Special Issue, 15, 989-992, 1988
Suppe, J., Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan, Memoir of the Geological Society of China, v. 6, p. 21-33, 1984
Suppe, J., Principles of Structural Geology, Prentice-Hall, Englewood Cilffs, 537pp., 1985
Suppe, J and namson, J., Fault-bend origin of frontal folds of western Taiwan fold and thrust belt, Proc. Geol. Soc. China, 16, 1-1, 1979
Song, S. R., L. W. Kuo, E. C. Yeh, C. Y. Wang, J. H. Hung, and K. F. Ma, Character- istics of the lithology, fault-related rocks and fault zone structures in TCDP Hole-A. Terr. Atmos. Ocean. Sci.,18,243-269,doi: 10.3319/TAO.2007.18.2.243(TCDP), 2007
Tadokoro, K., M. Ando, and Y. Umeda, S wave splitting in the aftershock region of the 1995 Hyogo-ken Nanbu earthquake, Journal of Geop. Res., Vol. 104, No. B1, 981-991, 1999
Wang, C.Y., Constructing subsurface structures of the Chelungpu fault to investigate mechanisms leading to abnormally large ruptures during the 1999 Chi-Chi earthquake, Taiwan. Geophys. Res. Lett., vol. 31 (2) pp. 4, 2004
Wang, C.Y., C. L. Li, and H. Y. Yen, Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics, Geophys. Res. Lett., NO. 16, 1790, 10.1029/2001GL014496, 2002
Wiprut, D. and M.D. Zoback, Constraining the full stress tensor in the Visund field, Norwegian North Sea: Application to wellbore stability and sand production, Int'l. J. Rock Mech. & Mining Sci., v. 37, pp. 317-336, 2000
Wu, H.-Y., K.-F. Ma, M. D. Zoback, N. Boness, H. Ito, J.-H. Hung, and S. Hickman, Stress orientation of Taiwan Chelungpu-fault Drilling Project (TCDP) hole-A as observed from geophysical logs, Geophysical research letters, Vol. 34, L01303, doi:10.1029/2006GL028050, 2007
Wu, J. C.,S. T. Huang, M. H. Wang, C. C. Tsai, W. W. Mei, J. H. Hung, T. Y. Lee, K. M. Yang, and K. F. Lee, Core slabbing and nannofossil analysis on the Chelungpu fault zone, Taichung, Taiwan. Terr. Atmos. Ocean. Sci., 18, 295-325, doi: 10.3319/ TAO.2007.18.2.295(TCDP), 2007
Wu, Y.-H., E.-C. Yeh, J.-J. Dong, L.-W. Kuo, J.-Y. Hsu, and J.-H. Hung, Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project, Geophysical Journal International, Volume 174, Number 3, pp. 949-965(17), 2008
Yue, L.F., Suppe, J., and J.H. Hung, Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquale Taiwan. (Mw=7.6), Journal of Structure Geology, 27, 2058-2083, 2005
Zinke, J. C. , and M. D. Zoback, Structure-related and stress-induced shear-wave velocity anisotropy: observations from microearthquakes near the Calaveras fault in central California, Bull. Seism. Soc. Am. 90, 1305–1312, 2000
Zoback, M.D., Reservoir Geomechanics, 1st ed., 7 pp., Cambridge, new york, 2007
Zoback, M.D. and M.L. Zoback, Tectonic stress field of North America and relative plate motions, in Slemmons, D.B., Engdahl, E.R., Zoback, M.D. and Blackwell, D.D., eds., Neotectonics of North America. Geol. Soc. Amer., Boulder, Co. Decade Map Volume 1, p.339-366, 1991
Zoback, M. D., D. Moos, L. Mastin, and R. N. Anderson, Well bore breakouts and In situ stress, Journal of Geophysical Research, 90(B7), 5523-5530, 1985
Zoback, M.D., L. Mastin and C. Barton, In situ stress measurements in deep boreholes using hydraulic fracturing, wellbore breakouts, and Stonely wave polarization, In Rock Stress and Rock Stress Measurements, Proc. of Conf. in Stockholm, Sweden, 1-3 September 1986, 289-299. (ed. Stefansson, O.) Centrek Publ., Lulea, 1987
Zoback, M.D., C.A. Barton, M. Brudy, D.A. Castillo, T. Finkbeiner, B.R. Grollimund, D. B. Moos, P. Peska, C.D. Ward, and D.J. Wiprut, Determination of stress orientation and magnitude in deep wells, Int'l Jour. Rock Mech. and Mining Sciences, 40, 1049-1076, 2003
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2010-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明