博碩士論文 93643004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.144.12.205
姓名 賴珮晨(Pei-Chen Lai)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 福衛三號全電子濃度對於太陽風造成中等尺度磁場擾動的增加反應
(COSMIC Observations of TEC Enhancements in Response to moderate disturbances in the solar wind)
相關論文
★ 梯度漂移不規則體之準週期性移動的研究★ 利用TIEGCM對電離層F層之電漿漩渦的模擬研究
★ 利用TIEGCM對電離層擾動發電效應的模擬研究★ 利用中壢特高頻雷達對準週期回波的研究
★ 利用華衛一號來研究磁暴效應對磁赤道地區電場之影響★ 利用IPEI資料研究磁暴效應對電離層磁赤道電場的影響
★ 利用30MHz雷達進行中壢地區日間場沿不規則體的研究★ 利用福衛一號的資料探討磁暴期中低緯度電離層的反應
★ 利用福衛一號的資料探討磁暴期電離層之擾動發電電場★ 電離層中性分子密度變化對太陽活動的響應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在於研究全電子濃度 (TEC, Total Electron Content) 在高速太陽風(HHS, high speed stream) 經過地球時的變化情形. 我們分析的資料以COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) 衛星觀測資料為主, 發生時間是2007年11月18-22日為期五天. 發生在SSH之前的共轉反應區 (CIR, Corotating Interaction Region) 期間內, 被擠壓的電漿濃度有明顯的升高, 伴隨的行星際磁場 (IMF, Interplanetary Magnetic Field) 對地球造成中等尺度磁暴的影響. 我們利用垂直高度的積分算出在每個掩星路徑正切點的TEC後, 發現在當地時間中午左右時中高緯度的TEC有增值的現象, 同時IMF的狀態是一個完整磁暴週期中的主要相位 (main phase). 分析資料的結果亦顯示某些TEC增值後的數字是電離層安靜期的3到4倍. 為了尋求增值的原因, 我們使用Hardy極區能量模型作為依據. 在類似的太空環境條件下, Hardy極區能量模型指出從磁層注入電離層高緯度地區的能量不是主要讓TEC增加的原因. 因此我們認為COSMIC白天觀測到的電漿濃度增高的情形是由其他地區的轉移 (transport) 來的. 從ACE衛星量測到的太空資料可以讓我們估計從磁層到電離層的穿透電場 (penetration electric field) 強度, 由此可以得到其與地磁場作用後的漂移速度 (E_B drift velocity). 最後我們亦使用TIEGCM的模擬結果來作比較.
摘要(英) COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate) satellite data, acquired during five days in November 2007, were analyzed to study the Total Electron Content (TEC) enhancements as a high speed stream (HSS) in the solar wind passed the Earth. In the case of Julian Day 322-326, the HSS arrival was closely preceded by the arrival at the first Lagrange point L1 of an interplanetary coronal mass ejection (ICME). The corotating interaction region (CIR) at the leading edge of the HSS was marked by a sharp increase in plasma density, followed by an intensification and rotation of the interplanetary magnetic field (IMF), inducing a moderate magnetic storm. We calculated the TEC by integrating electron density profiles over altitude and assigned values to the locations of ray-tangent points. The TEC enhancements appeared at mid- to high-magnetic latitudes during the main phase of a magnetic storm driven by the fast stream’s leading edge. Some TEC increases exceeded quiet-time values by a factor of 3 to 4. The Hardy model for distributions of auroral electron precipitation indicated that no source for new plasma creation was present in the range of magnetic latitudes where the TEC enhancements occurred. Thus, the TEC enhancements must reflect transport effects. Neutral winds generated at auroral latitudes should push dayside plasma equatorward, just as opposite to the COSMIC observations. Rather, required transport implies plasma drifts from low to higher latitudes, due to the dawn-to-dusk penetration electric fields. ACE measurements allow estimates of penetration electric field strengths. These are then mapped to the ionosphere and used to calculate plasma transport velocities. We compare empirical solutions of the continuity equation with the TIEGCM predictions.
關鍵字(中) ★ 電場
★ 全電子濃度
★ 福衛三號
關鍵字(英) ★ COSMIC
★ TEC
★ penetration electric field
論文目次 List of Figures i
List of Tables vii
Chapter 1 Introduction 1
Chapter 2 Data Resources
2.1 Kp 4
2.2 Dst and Sym-H 8
2.3 COSMIC/FORMOSAT-3: 13
2.4 SOHO 21
2.5 ACE 23
2.6 GRACE 25
2.7 MAPGPS 27
Chapter 3. Analytical Tools
3.1 TIEGCM 30
3.2 Volland-Stern electric field model 47
3.3 Hardy auroral model 59
Chapter 4. The Geospace Environment 62
Chapter 5. COSMIC- GPS occultation technique and the Observations 73
Chapter 6. Discussion 97
Chapter 7. Summary, Conclusions and Future work 120
References 125
Appendix. Mapping Electric Fields and Plasma Drifts 132
參考文獻 Balogh, A., J. T. Gosling, J. R. Jokipii, R. Kallenbach, and H. Kunow (Eds.) (1999), Corotating interaction regions, Space Sci. Rev., 89, 141 – 411.
Bartels, J. (1949), The standardized index, Ks, and the planetary index, Kp, IATME Bull. 12b, 97, IUGG Pub. Office, Paris, Bernhardt et al., Two-dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT) (1998), Physics of Plasmas, vol.5., no. 5, 2010-2021.
Blanc, M., and A. D. Richmond (1980), The ionospheric disturbance dynamo, J. Geophys. Res., 85, 1669, 1980.
Borovsky, J. E., and M. H. Denton (2006), Differences between CME-driven storms and CIR-driven storms, J. Geophys. Res., 111, A07S08, doi:1029/2005JA011447.
Bust, G.S., J.A. Cook, G.R. Kronschnabl, C.J. Vasicek, and S. B. Ward (1994), Int. J. Imag. Sys. Tech., 5, 160-168.
Bruinsma, S., Biancale, R. (2003), Total densities derived from accelerometer data, J. Spacecraft Rockets, 40, 230.
Bruinsma, S., Tamagnan, D., Biancale, R. (2004), Atmospheric densities derived from CHAMP/ STAR accelerometer observations, Planet. Space Sci., 52, 297.
Bruinsma, S. L., and J. M. Forbes (2007), Global observations of travelling atmospheric disturbances (TADs) in the thermosphere, Geophys. Res. Lett., 34, L14103, doi:10.1029/ GL030243.
Burke, W. J., L. C. Gentile and M. P. Hagan (2010), Thermospheric heating by high speed streams in the solar wind, J. Geophys. Res., 115, doi:10.1029/2009JA014585 (in press).
Burke, W. J., Penetration electric fields: A Volland-Stern approach, J. Atmos. Solar-Terr. Phys., 69, 1114-1126, 2007.
Burke, W. J., T. L. Ferringer, D. R. Weimer, C. Y. Huang, M. S. Gussenhoven, F. J. Rich, and L. C. Gentile (1998), Observed and predicted potential distributions during the October 1995 magnetic cloud passage, Geophys. Res. Lett., 25, 3023.
Burke, W. J., D. R. Weimer, and N. C. Maynard (1999), Geoeffective interplanetary scale sizes derived from regression analysis of polar cap potentials, J. Geophys. Res., 104, 9989.
Chapman S. and R. S. Lindzen, Atmospheric Tides, Reidel Press, Dordrecht, Holland, 1970.
Chen, A. J., and R. A. Wolf, Effects on the plasmasphere of a time-varying convection electric field, Planet. Space Sci., 80, 483-509, 1972
Chen-Joe Fong, Member, IEEE, Wen-Tzong Shiau, Chen-Tsung Lin, Tien-Chuan Kuo, Chung-Huei Chu, Shan-Kuo Yang, Nick L. Yen, Shao-Shing Chen, Ying-Hwa Kuo, Yuei-An Liou, Senior Member, IEEE, and Sien Chi (2008), Constellation Deployment for the FORMOSAT-3/COSMIC Mission, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, 3367-3378.
Daglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini (1999), The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 37(4), 407–438, doi:10.1029/1999RG900009.
de La BeaujardiËre, O., et al., C/NOFS: A Mission to forecast scintillations, J. Atmos. Solar Terr. Physics, 66, 1573, 2004.
DelaboudiniËre, J. P., G.E. Artzner and J. Brunaud et al. (1995), EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO mission, Solar Phys., 162, 291–312.
Dickinson, R., E. Ridley, and R. Roble (1981), A Three‐Dimensional General Circulation Model of the Thermosphere, J. Geophys. Res., 86(A3), 1499-1512.
Dickinson, R. (1984), Thermospheric gereral circulation with cooupled dynamics and composition, J. Atmo. Sci., 41, 205-219.
Dungey J. W., Interplanetary Magnetic Field and the Auroral Zones, Phys. Rev. Let., 6, 47-49, 1961
Ejiri, M. (1978), Trajectory traces of charged particles in the magnetosphere, J. Geophys. Res., 83, 4798.
Elsen, R. K., and R. M. Winglee (1997), The average shape of the magnetopause: A comparison of three-dimensional global MHD and empirical models, J. Geophys. Res., 102, 4799.
Fesen, C., R. Dickinson, and R. Roble (1986), Simulation of the Thermospheric Tides at Equinox with the National Center for Atmospheric Research Thermospheric General Circulation Model, J. Geophys. Res., 91(A4), 4471-4489.
Foster, J. C., and W. Rideout (2005), Midlatitude TEC enhancements during the October 2003 superstorm, Geophys. Res. Lett., 32, L12S04, doi:10.1029/2004GL021719.
Fukushima, N., and Y. Kamide (1973), Partial ring current models for worldwide geomagnetic disturbances, Rev. Geophys., 11(4), 795–853, doi:10.1029/RG011i004p00795
Greenspan, M. E., C. E. Rasmussen, W. J. Burke, and M. A. Abdu (1991), Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989, J. Geophys. Res., 96, 13,931-13,942.
Hagan, M. E. and J. M. Forbes (2002), Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107(D24), 4754, doi:10.1029/2001JD001236.
Hagan, M. E. and J. M. Forbes (2003), Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res.,108(A2), 1062, doi:10.1029/2002JA009466.
Haines, G. V. (1985), Spherical cap harmonic analysis, J. Geophys. Res., 90, 2583.
Hardy, D., M. Gussenhoven, and E. Holeman (1985), A Statistical Model of Auroral Electron Precipitation, J. Geophys. Res., 90(A5), 4229-4248.
Hardy, D. A., M. S. Gussenhoven, and D. Brautigam (1989), A Statistical model of auroral ion precipitation, J. Geophys. Res., 94, 370.
Hardy, D. A., W. McNeil, M. S. Gussenhoven, and D. Brautigam (1991a), A Statistical model of auroral ion precipitation, 2. Functional representation of the average patterns, J. Geophys. Res., 96, 5539.
Hardy, D. A., M. S. Gussenhoven, F. J. Rich, and D. H. Brautigam (1991b), The average pattern of auroral particle precipitation, its associated conductivity and field aligned currents, J. Geomag. Geoelectr., 43, 337.
Hardy, D. A., E. G. Holeman, W. J. Burke, L. C. Gentile, and K. H. Bounar (2008), Probability distributions of electron precipitation at high magnetic latitudes, J. Geophys. Res., 113, A06305, doi:10.1029/2007JA012746.
Heelis, R., J. Lowell, and R. Spiro (1982), A Model of the High‐Latitude Ionospheric Convection Pattern, J. Geophys. Res., 87(A8), 6339-6345.
Heelis, R. A., J. J. Sojka, M. David, and R. W. Schunk (2009), Storm time density enhancements in the middle-latitude dayside ionosphere. J. Geophys. Res., 114, A03315, doi: 1029/2008JA013690.
Hill, T. W. (1984), Magnetic coupling between solar wind and magnetosphere: Regulated by ionospheric conductance, EOS, Trans. Amer. Geophys. U., 65, 1047.
Howe, H. C., Jr., and J. H. Binsack (1972), Explorer 33 and 35 plasma observations of flow, J. Geophys. Res., 77, 3334
Huang, C. M., and M. Q. Chen (2008), Formation of maximum electric potential at the geomagnetic equator by the disturbance dynamo, J. Geophys. Res., 113, A03301, doi:10.1029/2007JA012843.
Iyemori, T., Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations, J. Geomag. Geoelectr., 42, 1249-1265, 1990.
Jursa, A. S., Handbook of geophysics and the space environment, 1985
Kan, J. R., and L. C. Lee, Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett., 6,577, 1979.
Kavanagh, L.D., J. W. Freeman, and A. J.Chen (1968), Plasma flow in the magnetosphere, J. Geophys. Res., 73, 5511.
Kikuchi T., K. K. Hashimoto, and K. Nozaki (2008), Penetration of magnetospheric electric fields to the equator during a geomagnetic storm, J. Geophys. Res., 113, A06214, doi:10.1029/2007JA012628.
Krieger, A. S., A. F. Timothy, and E. C. Roelof (1973), A coronal hole and its identification as the source of a high speed solar wind stream, Sol. Phys., 23, 123.
Lean, J. (1987), Solar Ultraviolet Irradiance Variations: A Review, J. Geophys. Res., 92(D1), 839–868.
Lean, J. (1991), Variations in the Sun's radiative output, Rev. Geophys., 29(4), 505-535.
Lei, J., et al. (2007), Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results, J. Geophys. Res., 112, A07308, doi:10.1029/2006JA012240.
Levy, R. H., H. E. Petschek and G. L. Siscoe (1964), Aerodynamic aspects of magnetospheric flow, AIAA J., 2, 2065 - 2076.
McComas, D. J., S. J. Bame, P. Barber, W. C. Fieldman, J. L. Phillips, and P. Riley (1998), Solar wind electron, proton, and alpha monitor (SWEPAM) on the Advanced Composition Explorer, Space Sci. Rev., 86, 563.
McIlwain, C. E., Coordinates for Mapping the Distribution of Magnetically Trapped Particles, J. Geophys. Res., 66, pp. 3681-3691, 1961.
Mayaud, P. N. (1980), Derivation, Meaning, and Use of Geomagnetic Indices, Geophysical Monograph 22, American Geophysical Union, Washington, D. C..
Menvielle, M., A possible geophysical meaning of the K indices, Ann. Geophys., 35, 188, 1979.
Mozer, F. S. (1970), Electric field mapping in the ionosphere at the equatorial plane, Planet. Space Sci., 18, 259 - 263.
Nolte, J. T., A. S. Krieger, A. F. Timothy, R. E. Gold, E. C. Roelof, G. Vaiana, A. J. Lazarus, J. D. Sullivan, and P. T. McIntosh (1976), Coronal holes as sources of solar wind, Sol. Phys., 46, 303.
Ober, D. M., N. C. Maynard, and W. J. Burke (2003), Testing the Hill model of transpolar potential saturation, J. Geophy. Res., 108(A12), 1467, doi:10.1029/2003JA 010154.
Qian Liying (2007), Modeling Thermospheric Neutral Density. PhD dissertation, Univ. of Pennsylvania, Philadelphia.
P.-C. Lai, C. S. Lin, W. J. Burke, C.-M. Huang, and M.-Q. Chen (2011), COSMIC observations of dayside total electron content enhancements in response to moderate disturbances in the solar wind, J. Geophys. Res., 116, A05318, doi:10.1029/2010JA015772.
Rasmussen, C., and M. Greenspan (1993), Plasma Transport in the Equatorial Ionosphere During the Great Magnetic Storm of March 1989, J. Geophys. Res., 98(A1), 285-292.
Richards, P. G., J. A. Fennelly, and D. G. Torr (1994), EUVAC: A Solar EUV Flux Model for Aeronomic Calculations, J. Geophys. Res., 99(A5), 8981–8992.
Richmond, A. D., E. C. Ridley, and R. G. Roble (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19(6),601-604.
Richmond, A. D. (1995), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoele., 47, 191– 212.
Rideout, W., and A. Coster (2006), Automated GPS processing for global total electron content data, GPS Solutions, 10(3), 219– 228, doi:10.2007/s10291-006-0029-5.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson (1988), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15(12), 1325–1328.
Rocken C. , Y. H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, C. McCormick (2000), COSMIC System Description, Special issue of TAO (Terrestrial, Atmospheric and Oceanic Science), vol. 11, no. 1, 21-52.
Roelof, E. C., and D. G. Sibeck (1993), Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure, J. Geophys. Res., 98, 21,241.
Rossi, B., and S. Olbert (1970), Introduction to the Physics of Space, McGraw-Hill Book Company, New York, 411-419.
Scherliess, L., and B. Fejer (1997), Storm time dependence of equatorial disturbance dynamo zonal electric fields, J. Geophys. Res., 102, A11, doi:10.1029/97JA02165, 24,037.
Siscoe, G. L., G. M. Erickson, B. U. ÷., Sonnerup, N. C. Maynard, J. A. Schoendorf, K. D. Siebert, D. R. Weimer, W. W. White, and G. R. Wilson (2002a), Hill model of transpolar potential saturation: Comparison with MHD simulation, J. Geophys. Res., 107(A6), doi:10.1029/2001JA000109.
Siscoe, G. L., N. U. Crooker, K. D. Siebert (2002b), Transpolar potential saturation: Roles of region 1 current system and solar wind ram pressure, J. Geophys. Res., 107(A10), 1321, doi:10.1029/2001JA009176.
Smith, C. W., M. H. Acuna, L. F. Burlaga, J. L'Heureux, N. F. Ness, and J. Scheifele (1998), The ACE Magnetic Field Experiment, Space Sci. Rev., 86, 613.
Sonnerup, B. U. ÷. (1976), Magnetopause reconnection rate, J. Geophys. Res., 81, 1546.
Solomon S. C. and L. Qian (2005), Solar extreme‐ultraviolet irradiance for general circulation models, J. Geophys. Res., 110, A10306, doi:10.1029/2005JA011160.
Southwood, D. J., and S. M. Kaye (1979), Drift boundary approximations in simple magneto-spheric convection models, J. Geophys. Res., 84, 5773.
Stern, D. P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res., 80, 595.
Sugiura, M. (1964), Hourly values of equatorial Dst for the IGY, Annual International Geophysical Year, 35, 49.
Sutton, E. K. (2009), Normalized force coefficients for satellites with elongated shapes, J. Spacecraft and Rockets, 46, 112 – 116.
Sugiura, M., and T. Kamei (1991), Equatorial DST index 1957 – 1986, in IAGA Bull., 40, edited by A. Berthelier and M. Menvielle, Int. Serv. of Geomagn. Indices Publ. Off., Saint Maur, France.
Tapley, B. D., D. Ries, J. C. Bettadpur and M. Cheng (2007), Neutral density measurements from Gravity Recovery and Climate Experiment accelerometers, J. Spacecraft and Rockets, 44, 1220 – 1225.
Torr, M. R., D. G. Torr, R. A. Ong, and H. E. Hinteregger (1979), Ionization frequencies for major thermospheric constituents as a function of solar cycle 21, Geophys. Res. Lett., 6(10), 771-774.
Tsai, Lung-Chih and Wei-Hsiung Tsai (2004), Improvement of GPS/MET Ionospheric Profiling and Validation Using the Chung-Li Ionosonde Measurements and the IRI model, TAO (Terrestrial, Atmospheric and Oceanic Science), vol. 15, no. 4, pp.589-607.
Tsai, L.-C., W. H. Tsai, W. S. Schreiner, F. T. Berkey, and J. Y. Liu (2001), Comparisons of GPS/MET retrieved ionospheric electron density and ground based ionosonde data, Earth, Planets and Space, 53, 193-205.
Tsurutani, B. T., and W. D. Gonzalez (1987), The cause of high intensity long-duration continuous AE activity (HILDCAA): Interplanetary AlfvÈn wave trains, Planet. Space Sci., 35, 405.
Tsurutani, B., et al. (2004), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi:10.1029/2003JA010342.
Tsurutani, B. T., et al. (2006), Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01, doi:10.1029/2005JA011273.
Tsurutani, B. T., W. D. Gonzalez, A. L. C. Gonzalez, F. L. Guarnieri, N. Gopalswamy, M. Grande, Y. Kamide, Y. Kasahara, G. Lu, I. Mann, R. McPherron, F. Soraas, and V. Vasyliunas (2006a), Corotating solar wind streams and recurrent geomagnetic activity: A review, J. Geophys. Res., 111, A07S01, doi:10.1029/2005JA011273.
Tsurutani, B. T., A. J. Mannucci, B. A. Iijima, A. Komjathy, A. Saito, T. Tsuda, O. P. Verkhoglyadova, W. D. Gonzalez, and F. L. Guarnieri (2006b), Dayside ionospheric (GPS) response to corotating solar wind streams, in Recurrent Magnetic Storms: Corotating Solar Wind Streams, Amer. Geophys. U. Monograph 167, Washington, D. C., pp 245-270.
Volland, H. (1973), A semiempirical model of large-scale magnetospheric electric fields, J. Geophys. Res., 78, 171.
Weimer, D. R. (2005a), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270.
Weimer, D. R. (2005b), Predicting surface geomagnetic variations using ionospheric electrodynamic models, J. Geophys. Res., 110, A12307, doi:10.1029/2005JA011270.
Wenbin Wang, A thermosphere-ionosphere nested grid (TING) model, A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The University of Michigan , 1998
Winterhalter, D., E. J. Smith, M. E. Burton, N. Murphy, and D. J. McComas (994), The heliospheric current sheet, J. Geophys. Res. 99, 6667.
Yue, X., W. S. Schreiner, J. Lei, S. V. Sokolovskiy, C. Rocken, D. C. Hunt, and Y.‐H. Kuo (2010), Error analysis of Abel retrieved electron density profiles from radio occultation measurements, Ann. Geophys., 28, 217–222, doi:10.5194/angeo-28-217-2010.
指導教授 黃健民(Chien-Ming Huang) 審核日期 2011-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明