博碩士論文 942201005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.227.233.6
姓名 張凱涵(Kai-han Chang)  查詢紙本館藏   畢業系所 數學系
論文名稱
(2-decomposable, 3-decomposable multipaths and t-decomposable spiders)
相關論文
★ 圖之均勻分解與有向圖之因子分解★ 加權圖之和、中位點及位移
★ 迴圈之冪圖的星林分解數★ 圖形的線性蔭度及星形蔭度
★ On n-good graphs★ A Note On Degree-Continuous Graphs
★ Status Sequences and Branch-Weight Sequences of Trees★ n-realizable Quadruple
★ 圖形的路徑分解,迴路分解和星形分解★ 星林圖的二分解與三分解
★ 圖形分解與反魔圖★ The antimagic graph with a generalization
★ 圖的程度序列和狀態★ The 3-split of multipaths and multicycles with multiplicity 2
★ 圖形之分割與反魔標號
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一個圖G可以被分解成t個同構的子圖,我們稱G是可t分解的。
具有多重邊的路(path)稱為multipath。
一個樹(tree)只有唯一一個點(vertex) degree $geq$ 3,稱為蜘蛛(spider).
在這篇論文中,
我們探討了可二分解和三分解的multipaths與可t分解的蜘蛛。
摘要(英) A graph G is t-decomposable if and only if G can be decomposed into t isomorphic
subgraphs. A multipath is a path with multiple edges allowed. A spider is a tree which
has a unique vertex with degree ≥ 3.
In this thesis, we investigate 2-decomposable and 3-decomposable multipaths and
t-decomposable spiders.
關鍵字(中) ★ 圖形分解
★ 多重邊路圖
★ 蜘蛛圖
關鍵字(英) ★ multipaths
★ decomposition
★ spiders
論文目次 Abstract (in Chinese) i
Abstract (in English) ii
l
參考文獻 [1] J. Bosa’k, Decompositions of graphs, Kluwer Academic, MA (1990).
[2] C. R. J. Clapham, Graphs self-complementary in Kn − e, Discrete Math. 81
(1990), 229–235.
[3] T. Gangopadhyay, S. P. Rao Hebbare, Multipartite self-complementary graphs,
Ars Combin. 13 (1982), 87–114
[4] T. Gangopadhyay, S. P. Rao Hebbare, r-partite self-complementary graph-
diameters, Discrete Math. 32 (1980), 245–255.
[5] Gibbs, Richard A. Self-complementary graphs, J. Combinatorial Theory. Ser.
B 16 (1974), 106–123.
[6] F. Harary, R. W. Robinson and N. C. Wormald, Isomorphic factorization III
complete multipartite graphs, Combinatorial Math, Lecture Notes in Math. 686
(1978), 47–54.
[7] F. Harary, R. W. Robinson and N. C. Wormald, The Divisibility theorem for
isomorphic factorization of complete graphs, J. Graph Theory l (1977), 187–
188.
[8] Quinn, S. J. Factorization of complete bipartite graphs into two isomorphic sub-
graphs, Combinatorial Math. ù, 98–111, Lecture Notes in Math. 748, Springer,
Berlin, 1979.
[9] Quinn, S. J. Isomorphic factorization of complete equipartite graphs, J. Graph
Theory 7 (1983), no.3, 285–310.
[10] D.B. West, Introduction to graph theory, 2nd ed. , Prentice-Hall, NJ (2001).
指導教授 林強(Chiang Lin) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明