博碩士論文 942201023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:35.172.100.232
姓名 陳美君(Mei-chun Chen)  查詢紙本館藏   畢業系所 數學系
論文名稱 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
(Numerical Computation of the 2-D Stationary Incompressible MHD Problem by Iterative Least-Squares Finite Element Schemes)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究
★ 非線性耦合動力網路的同步現象分析★ 邊界層和內部層問題的穩定化有限元素法
★ 數種不連續有限元素法求解對流佔優問題之數值研究★ 某個流固耦合問題的有限元素法數值模擬
★ 高階投影法求解那維爾-史托克方程組★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法
★ 二維非線性淺水波方程的Lax-Wendroff差分數值解★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬★ 一種用於人臉偵測的卷積神經網路
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們主要研究穩態不可壓縮磁流體(MHD)問題的兩種皮卡型迭代最小平方有限元素法數值解。首先引入兩個新未知變數旋度和電流密度,我們可推得在速度-旋度-壓力-磁場-電流密度(VVPMC)形式下的非線性一階不可壓縮MHD問題。接著我們引用兩種皮卡型迭代最小平方有限元素法以求取此一階不可壓縮VVPMC MHD問題之數值解。在每一次皮卡型迭代中,使用加權或未加權的L2最小平方有限元素法求解其相對應的一階歐辛型的問題。針對各種不同流體雷諾數的一階歐辛型問題和非線性一階VVPMC MHD問題,數值實驗結果證明了此類最小平方有限元素法的精確度。最後,我們列出MHD流體通過某個階梯形流場的數值結果。
摘要(英) In this thesis, we study two Picard-type iterative least-squares finite element schemes for approximating the solution to the stationary incompressible magneto
-hydrodynamic (MHD) problem. Introducing the additional vorticity and current density variables, we have the non-linear first-order incompressible MHD problem in the velocity-vorticity-pressure-magnetic field-current density (VVPMC) formulation. Two Picard-type iterative least-squares finite element schemes are then applied for finding the numerical solution of the first-order incompressible VVPMC MHD problem. In each Picard iteration, the L2 least-squares finite element scheme with or without weights is employed to approximate the solution of the associated first-order Oseen-type problem. Numerical experiments with various hydrodynamic Reynolds numbers for the first-order Oseen-type problem and the non-linear first-order VVPMC MHD problem are reported to demonstrate the accuracy of the least-squares finite element approach. Finally, numerical results of an MHD flow over a step are also given.
關鍵字(中) ★ 最小平方
★ 那維爾-史托克方程
★ 馬克士威方程
★ 有限元素法
★ 磁流體方程
關鍵字(英) ★ least squares
★ finite element methods
★ Maxwell's equations
★ magneto-hydrodynamic equations
★ Navier-Stokes equations
論文目次 中文摘要 ......................................... i
英文摘要 ......................................... ii
目錄 ............................................. iii
Abstract ......................................... 1
1. Problem formulation ........................... 2
2. Least-squares finite element schemes .......... 6
3. Numerical experiments ......................... 12
4. Numerical results of an MHD flow over a step .. 23
5. Conclusions ................................... 26
References ....................................... 27
參考文獻 [1] P. B. Bochev, Analysis of least-squares finite element methods for the Navier-Stokes equations, SIAM, J. Numer. Anal., 34 (1997), pp. 1817-1844.
[2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for the Stokes equations, Math. Comp., 63 (1994), pp 479-506.
[3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM Rev., 40 (1998), pp 789-837.
[4] P. B. Bochev, Z. Cai, T. A. Manteuffel and S. F. McCormick, Analysis of velocity-flux first-order system least-squares principles for the Navier-Stokes equations: Part I, SIAM J. Numer. Anal., 35 (1998), pp. 990-1009.
[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer-Verlag, New York, 1994.
[6] F. Brezzi and M. Fortin,Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[7] Z. Cai, T. Manteuffel, and S. McCormick, First-order system least squares for velocity-vorticity-pressure form of the Stokes equations, with application to linear elasticity, ETNA, 3 (1995), pp. 150-159.
[8] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for the Stokes equations, with application to linear elasticity, SIAM J. Numer. Anal., 34 (1997), pp. 1727-1741.
[9] C. L. Chang, An error estimate of the least squares finite element method for the Stokes problem in three dimensions,Math. Comp., 63 (1994), pp. 41-50.
[10] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite element method of velocity-pressure-vorticity formulation for Stokes problem, Comput. Methods Appl. Mech. Engrg., 84 (1990), pp. 247-255.
[11] C. L. Chang, S.-Y. Yang, and C.-H. Hsu,A least-squares finite element method for incompressible flow in stress-velocity-pressure version, Comput. Methods Appl. Mech. Engrg., 128 (1995), pp. 1-9.
[12] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite element method for the velocity-vorticity-pressure Stokes equations with velocity boundary conditions, Appl. Math. Comput., 130 (2002), pp. 121-144.
[13] M.-C. Chen, B.-W. Hsieh, C.-T. Li, Y.-T. Wang,and S.-Y. Yang, A comparative study of two iterative least-squares finite element schemes for solving the stationary incompressible Navier-Stokes equations, preprint, 2007.
[14] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite element methods for the Stokes equations, SIAM J. Sci. comput.,20 (1998), pp. 878-906.
[15] H.-Y. Duan and G.-P. Liang, On the velocity-pressure-vorticity least-squares mixed finite element method for the 3D Stokes equations, SIAM J. Numer. Anal., 41 (2003), pp. 2114-2130.
[16] J.-F. Gerbeau, A stabilized finite element method for the incompressible magnetohydrodynamic equations, Numer. Math., 87 (2000), pp. 83-111.
[17] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, New York, 1986.
[18] U. Hasler, A. Schneebeli, and D. Schotzau, Mixed finite element approximation of incompressible MHD problems based on weighted regularization, Appl. Numer. Math., 51 (2004), pp. 19-45.
[19] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.
[20] S. D. Kim, Y. H. Lee, and S.-Y. Yang, Analysis of [H-1, L2, L2] first-order system least squares for the incompressible Oseen type equations, Appl. Numer. Math., 52 (2005), pp. 77-88.
[21] A. Schneebeli and D. Schotzau, Mixed finite elements for incompressible magneto-hydrodynamics, C. R. Acad. Sci. Paris, Ser. I, 337 (2003),pp. 71-74.
[22]D. Schotzau, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., 96 (2004), pp. 771-800.
[23] C.-C. Tsai and S.-Y. Yang, On the velocity-vorticity-pressure least-squares finite element method for the stationary incompressible Oseen problem, J. Comp. Appl. Math., 182 (2005), pp. 211-232.
[24] Y.-T. Wang, On two iterative least-squares finite element schemes for solving the incompressible Navier-Stokes equations, Master Thesis, December 2007, National Central University, Taiwan.
[25] S.-Y. Yang, Error analysis of a weighted least-squares finite element method for 2-D incompressible flows in velocity-stress-pressure formulation, Math. Meth. Appl. Sci., 21 (1998), pp. 1637-1654.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2008-5-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明