博碩士論文 942202015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.235.107.209
姓名 黃英明(Ying-Ming Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 Gauss-Bonnet 重力理論中穿隧效應的霍金輻射
(Hawking Radiation as Tunneling in Gauss-Bonnet Gravity)
相關論文
★ 由Quintessencec和Phantom組成雙純量場的暗能量模型★ 自引力球殼穿隧的Hawking輻射
★ SL(4,R)理論下的漸近平直對稱轉換★ 外加B-場下於三維球面上之土坡弦及銳牙弦
★ 克爾-紐曼/共形場中的三點關聯函數★ 時空的熱力學面向
★ 四維黑洞的全息描述★ 萊斯納-諾德斯特洛姆黑洞下的成對產生
★ 自旋粒子在萊斯納-諾思通黑洞的生成★ Pseudo Spectral Method for Holographic Josephson Junction
★ 克爾-紐曼黑洞下的成對產生★ Holographic Josephson Junction in Various Dimensions
★ Characteristics of Cylindrically Symmetric Spacetimes in General Relativity★ Force Free Electrodynamics in Extremal Kerr-Newman Black Holes
★ Schwinger Effect in Near Extremal Charged Black Holes★ Thermodynamics of Scalar Field in Schwarzschild Black Holes
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在1974年,霍金率先提出在古典黑洞彎曲時空下場論的量子化效應會導致黑洞有熱輻射現象。經過了 30幾年之後,在1999年Wilzcek 和他的學生Parikh 提出一個非常漂亮的方法來處理霍金熱輻射。他們的方法是把球對稱黑洞視界附近霍金輻射當成是一種半古典的穿隧過程。這種穿隧過程隱含了動態黑洞幾何。我們將Parikh 和Wilzcek的方法應用到Gauss-Bonnet 黑洞上。Gauss-Bonnet 重力理論中廣義的黑洞可具有三種不同的空間曲率:k = 1為球形式,k = -1為馬鞍形,k = 0為平直形。我們經由穿隧效應的方法去計算這三類型式黑洞的熵,結果和從熱力學第一定律所獲得的熵是相等的。我們驗證了Parikh-Wilzcek的穿隧效應計算霍金輻射的方法也適用於Gauss-Bonnet理論的黑洞。
摘要(英) In 1974 Hawking had proposed the idea of the emission of thermal radiation from a black hole under the field theory quantized on classical curved spacetime. In 1999 Parikh and Wilzcek proposed an elegant method to treat the Hawking radiation as a semi-classical tunneling process near the event horizon of a spherically symmetric black hole. Their method incorporates the effects of a dynamical black hole geometry. We apply Parikh and Wilzcek’s method to Gauss-Bonnet black holes. We consider three types of “generalized black hole” with different spatial curvature, namely k = 1 for spherical, k = −1 for hyperbolic and k = 0 for flat, in Gauss-Bonnet gravity. We discover that the entropy obtained from the tunneling approach is consistent with the result derived from the first law calculation. Therefore, we show that the
tunneling approach works for the Gauss-Bonnet black holes with zero curvature, negative constant curvature and positive constant curvature hypersurfaces.
關鍵字(中) ★ 穿隧效應
★ 熵
★ 空間曲率
★ 霍金輻射
關鍵字(英) ★ Hawking radiation
★ entropy
★ curvature
★ tunneling
論文目次 中文摘要…………………………………………………………….I
英文摘要……………………………………………………………II
致謝…………………………………………………………………III
目錄…………………………………………………………………IV
Contents
1 Introduction...........................................1
1.1 History of Black Hole. ...... . . . . . . . . . . . 1
1.2 Event Horizons . . . . . . . . . . . . . . . . . . . 3
1.2.1 Null Hypersurface . . .. . . . . . . . . . . . . . 4
1.3 Killing Horizons . . . . . . . . . . . . . . . . . . 4
1.3.1 Surface Gravity . . . . . . . . . . . . . . . . . 5
1.3.2 Redshift Factor . .. . . . . . . . . . . . . . . . 6
1.4 Thermodynamics of Black Hole . . . . . . . . . . . 10
2 Black Holes in Gauss-Bonnet Gravity...................13
2.1 Higher Curvature Gravity .. . . . . . . . . . . . . 13
2.2 Anti-de Sitter Black Holes . . . . . . . . . . . . 14
2.3 Entropy of Anti-de Sitter Black Holes . . . . . . . 15
3 The WKB Approximation.................................18
4 Hawking Radiation as Tunneling........................22
4.1 Introduction .... . . . . . . . . . . . . . . . . . 22
4.2 Tunneling in Schwarzschild Black Hole . . . . . . . 23
5 Tunneling in Gauss-Bonnet Black Holes.................28
5.1 Mass and Event Horizon Radius . . . . . . . . . . . 29
5.2 The Velocity of Outgoing Particles . .. . . . . . . 32
5.3 Calculating Entropy . . . . . . . . . . . . . . . . 37
6 Conclusion............................................45
Bibliography............................................46
參考文獻 [1] Astronomical Society of Edinburgh Journal 39 - Black Holes - Part 1 - History.
[2] R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett. 11, 237 (1963).
[3] F. R. Tangherlini, “Schwarzschild field in N dimensions and the dimensionality of space problem”, Nuovo Cim. 27, 636 (1963).
[4] E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence,“Metric of a rotating, charged mass”, J. Math. Phys. 6, 918-919 (1965).
[5] B. Carter, “Hamilton-Jacobi and Schr¨odinger separable solutions of Einstein’s equations”, Commun. Math. Phys. 10, 280 (1968).
[6] B. Carter, “Black hole equilibrium states”, in: Black Holes (Les Houches Lectures),eds. B. S. DeWitt and C. DeWitt (Gordon and Breach, New York, 1972).
[7] G. W. Gibbons, H. Lu, D. N. Page and C. N. Pope, “The general Kerr-de Sitter metrics in all dimensions”, J. Geom. Phys. 53, 49-73 (2005).
[8] D. G. Boulware and S. Deser, “String-generated gravity models”, Phys. Rev.Lett. 55, 2656 (1985).
[9] R. C. Myers and M. J. Perry, “Black holes in higher dimensional space-times”,Ann. Phys. 172, 304 (1986).
[10] S. Carroll, Spacetime and Geometry: An Introduction to General Relativity,Benjamin Cummings (2003).
[11] P. K. Townsend, “Black holes”, arXiv:gr-qc/9707012.
[12] R. M. Wald, General Relativity, University Of Chicago Press (1984).
[13] H. C. Ohanian, Gravitation and Spacetime, W. W. Norton and Company (1994).
[14] E. Poisson, A Relativist’s Toolkit: The Mathematics of Black Hole, Cambridge University Press (2004).
[15] D. Lovelock, “The Einstein tensor and its generalizations,” J. Math. Phys. 12,498 (1971).
[16] R.-G. Cai, “Gauss-Bonnet black holes in AdS spaces”, Phys. Rev. D65, 084014 (2002)
[arXiv:hep-th/0109133].
[17] T. Clunan, S. F. Ross and D. J. Smith, “On Gauss-Bonnet black hole entropy”,Class. Quant. Grav. 21, 3447-3458 (2004) [arXiv:gr-qc/0402044].
[18] N. Zettili, Quantum Mechanics: Concepts and Applications, Wiley (2001).
[19] R. L. Liboff, Introductory Quantum Mechanics, Addison Wesley, (1980).
[20] S. W. Hawking, “Particle creation by black holes”, Comm. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)].
[21] J. B. Hartle and S. W. Hawking, “Path-integral derivation of black-hole radiance”,Phys. Rev. D13, 2188-2203 (1976).
[22] V. S. Mashkevich, “Conservative model of black hole and lifting of the information loss paradox,” arXiv:gr-qc/9707055.
[23] M. K. Parikh and F. Wilczek, ”Hawking Radiation As Tunneling”, Phys. Rev.Lett. 85, 5042-5045 (2000), [arXiv:hep-th/9907001].
[24] P. Painlev´e, “La mecanique classique el la theorie de la relativite,” C. R. Acad.Sci. (Paris) 173, 677 (1921).
[25] M. K. Parikh, “Energy conservation and Hawking radiation”, arXiv:hepth/0402166.
[26] B. Zwiebach, “Curvature squared terms and string theories”, Phys. Lett. B156,315 (1985).
指導教授 陳江梅(Chiang-Mei Chen) 審核日期 2007-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明