博碩士論文 942202031 詳細資訊


姓名 龔大勝(Da-Sheng Kung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 SL(4,R)理論下的漸近平直對稱轉換
(Asymptotic Flatness Preserving Transformations in SL(4,R) sigma-model)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 考慮一個具有SL(4,R)對稱性的五維理論,其中包含重力場、一個純量場及一個三階向量場,我們提出保持時空漸近平直的對稱轉換所必須滿足的條件,統整出在不同座標描述的平直時空中,滿足該條件的所有轉換。這篇論文主要針對以下三種不同時空結構做討論:Kaluza-Klein黑洞、五維的黑洞和black ring,我們詳細列出所有滿足漸近平直條件的對稱轉換,並且討論這些轉換所代表的物理意義,其中部分轉換可以給出帶有電荷的解。
摘要(英) We give a systematic method to determine the asymptotic flatness preserving transformations
in the three-dimensional SL(4,R)/SO(2, 2) sigma-model arising from a
five-dimensional gravity coupled to a dilaton and a three-form field. The permitted
transformations depend on the coordinate choices. By focusing on three cases,
namely the Kaluza-Klein black hole, five-dimensional black hole and black ring, we
find out all possible asymptotic flatness preserving transformations and apply them
to generate charge from single rotating vacuum solutions.
關鍵字(中) ★ 漸近平直
★ SL(4
★ R)模型
★ 五維黑洞
關鍵字(英) ★ asymptotic flat
★ SL(4
★ R) sigma-model
★ five dimensional black hole
★ black ring
論文目次 1 Introduction 1
2 SL(4,R) Symmetry 4
2.1 Sigma-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Basic symmetry transformations . . . . . . . . . . . . . . . . . . . . . 7
2.3 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Asymptotic Flatness Preserving 13
3.1 AFP condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Kaluza-Klein vacuum R3,1 × S1 . . . . . . . . . . . . . . . . . . . . . 15
3.3 5D Minkowski R4,1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Ring coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Charged Kaluza-Klein Black Holes 21
4.1 R1 − L1 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 T2 + T3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 R2 + L3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 S2 + S3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 R3 + L2 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 R4 − L4 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Charged 5D Black Holes 26
5.1 S3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 R2 + L3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Physical quantity . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 An equivalent approach . . . . . . . . . . . . . . . . . . . . . 29
6 Charged Ring Solutions 31
6.1 Neutral black rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 S3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.3 R2 + L3 transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3.1 Physical quantity . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.2 An equivalent approach . . . . . . . . . . . . . . . . . . . . . 37
7 Conclusion 39
7.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Bibliography 41
A Kaluza-Klein theory 43
B Relations of gauge field components 45
C Black Rings 46
C.1 Ring coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
C.2 Neutral black rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
D Target-space potentials 52
參考文獻 Bibliography
[1] A. Bouchareb, C. M. Chen, G. Clement, D. V. Gal’tsov, N. G. Scherbluck and
T. Wolf, “ G2 generating technique for minimal D=5 supergravity and black
rings, ” hep-th/0708.2361v2.
[2] C. M. Chen, D. V. Gal’tsov and S. A. Sharakin, “ Inverse dualization and nonlocal
dualities between Einstein gravity and supergravities, ” Class. Quantum
Grav. 19 (2002), 347-373.
[3] C. M. Chen, D. V. Gal’tsov, K. Maeda and S. A. Sharakin, “ SL(4,R) generating
symmetry in five−dimensional gravity coupled to dilaton and three−form,
” Phys. Lett. B453, 7 (1999), hep-th/9901130.
[4] H. Elvang, “ A charged rotating black ring, ” Phys. Rev. D 68, 124016 (2003).
[5] R. Emparan and H. S. Reall, “ A rotating black ring in five dimensions, ”
Phys. Rev. Lett. 88, 101101 (2002), hep-th/0110260.
[6] R. Emparan and H. S. Reall, “ Black rings, ” Class. Quant. Grav. 23, R169
(2006), hep-th/0608012.
[7] R. Emparan, “ Rotating circular strings and infinite non − uniqueness of
black rings, ” JHEP 03 (2004) 064.
[8] V. Frolov, A. Zelnikov and U. Bleyer, “ Charged rotating black holes from
five-dimensional point of view, ” Ann. der Physik (Leipzig) 44 (1987), 371-
377.
[9] S. Giusto and A. Saxena, “ Stationary axisymmetric solutions of five
dimensional gravity, ”hep-th/0705.4484v2.
[10] J. H. Horne and G. T. Horowitz, “ Rotating dilaton black holes, ” Phys. Rev.
D46 (1992), 1340-1346, hep-th/9203083.
[11] W. Israel, Phys. Rev. 164 (1967) 1776. B. Carter, Phys. Rev. Lett. 26 (1971)
331. D. C. Robinson, Phys. Rev. Lett. 34 (1975) 905.
[12] R. C. Myers and M. J. Perry, “ Black holes in higher dimensional space−times,
” Ann. Phys. 172 (1986) 304.
[13] A. A. Pomeransky and R. A. Sen’kov, “ Black ring with two angular momenta,
” hep-th/0612005.
指導教授 陳江梅(Chiang-Mei Chen) 審核日期 2008-5-23

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡