博碩士論文 942203005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.216.81.51
姓名 廖凱貞(Kai-Chen Liao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 雙炔基分子於不同基材表面薄膜結構及其聚合反應性研究與其場效電晶體試製
(Structure and polymerization properties of molecular films of diacetylenic derivatives on various surfaces: attempted application in field effect transistors)
相關論文
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機半導體材料三併環噻吩衍生物之開發與其薄膜、單晶場效電晶體元件製備與分析
★ 以自組裝單分子層介面修飾工程應用於鈣鈦礦太陽能電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究主要分為兩個部分,第一個部分為雙炔基有機酸分子(diacetylenic acid) 與雙炔基三氯矽烷分子(diacetylenic trichlorosilane)分別在銀、鋁表面與二氧化矽表面的自組單分子薄膜,藉由紅外線光譜分析與拉曼光譜、近緣X光吸收微組態光譜(NEXAFS)和UV吸收光譜分析結構及其topochemical聚合反應性。第二部分則是以真空蒸鍍方式將雙炔基有機酸蒸鍍於二氧化矽表面、壬烷基三氯矽烷(NTS)單層膜及刷磨過的壬烷基三氯矽烷單層膜上,藉由紅外線光譜、原子力顯微鏡及X光繞射儀觀察有機膜之表面型態與分子排列;並以之為通道材料製成有機場效電晶體元件,量測與評估元件的效果。
第一部分的研究結果顯示,照光聚合反應僅發生於銀表面的雙炔基有機酸單分子層,可能是該分子在銀和鋁的表面鍵結型態不同,造成分子間距離與分子鏈傾斜程度的差異。而NEXAFs分析結果發現,在表面經刷磨的處理會有利於分子傾向某一方向的排列。另外,在二氧化矽表面測量聚雙炔基矽烷自組裝單分子膜不同方向的電性,顯示在刷膜方向與源極-汲極方向平行時,其導電性性質比垂直方向電流大108倍,電流可達10-4A。第二部份的研究中,藉由紅外線光譜和原子力顯微鏡表面分析,我們發現雙炔基有機酸在二氧化矽表面和壬烷基三氯矽烷單層膜上應是以氫鍵結合的雙體站立的方式在表面堆疊;另外,當基材溫度增加,分子在表面的移動性提高,影響蒸鍍薄膜形貌與晶粒大小。在三種表面中,唯有在刷磨的壬烷基三氯矽烷單層膜上,刷磨方向與源極-汲極方向平行時,會有較好的場效現象,其他則無。
摘要(英) The thesis is divided into two parts. One is about self-assemble monolayer(SAM) of diacetylenic acid on silver and aluminum and diacetylenic trichlorosilane on silicon oxide surface. Their packing structure and topochemical polymerization behavior were investigated by Infraed Spectroscopy (IR), Raman Spectroscopy, Ultraviolet-visible spectroscopy(UV) and Near Edge X-ray Absorption Fine Structure Spectroscopy(NEXAFS). The second part is about the deposition and polymerization of diacetylenic acid films on silicon oxide surface and SAM-modified silicon oxide surfaces. These films were studied by IR, UV, Atomic Force Microscopy(AFM), Powder X-ray Diffraction (XRD). Field effect transistors based on these films as channel material were prepared and evaluated.
In the first part, topochemical polymerization was observed only for SAMs prepared on Ag surface, not on Al surface, probably due to different intermolecular distances and extent of chain tilt of diacetylenic acid adsorbed on two surfaces. Rubbing of the monolayer resulted in in-plane orientation preference in the packing. The electrical property of self-assemble monolayer of diacetylenylsilane on silicon oxide surface was measured to exhibit orientation-dependent conductance such that the conductivity along the rubbing direction is 108 times higher than that perpendicular to the rubbing direction.
In the second part, the deposited film of diacetylenic acid consists of layers of H-bonded dimmers oriented nearly perpendicular to the surface. The morphology depends strongly on the substrate temperature. FET devices based on the diacetylenic acid films as channel material showed gating effect only for films deposited on rubbed NTS-SiO2 surface at 50?C along the rubbing direction.
關鍵字(中) ★ 有機場效電晶體
★ 自組裝薄膜
★ 雙炔基分子
關鍵字(英) ★ polydiacetylene
★ self-assemble monolayer
★ topochemical polymerization
論文目次 摘要.......................I
總目錄.....................V
圖目錄....................XI
表目錄.................XVIII
壹、 緒論 .................1
1-1 聚雙炔基(polydiacetylene;簡稱:PDAs)化合物之簡介.....2
1-2 有機單分子薄膜.......................................7
1-2-1 自組裝單分子薄膜(Self-assembled monolayer).........7
1-2-1a 脂肪酸(Fatty acid)單分子膜.......................10
1-2-1b 烷基矽烷(alkylsilane) ...........................10
1-2-1c 烷基硫醇(alkylthiol).............................12
1-2-2 LB薄膜(Langmuir-Blodgett film)....................13
1-3 有機半導體簡介......................................16
1-4 有機半導體材料簡介..................................17
1-4-1 正型(p-type)半導體材料............................17
1-4-2 負型(n-type)半導體材料............................18
1-5 有機薄膜分子方向性之控制............................18
1-6 有機半導體薄膜製備..................................19
1-6-1 真空蒸鍍(vacuum evaporation)......................19
1-6-2 溶液塗佈(solution-processed deposition) ..........20
1-7 有機場效電晶體......................................20
1-7-1 有機場效電晶體元件結構............................21
1-7-2 有機場效電晶體元件原理............................22
1-7-3 有機場效電晶體的類型..............................24
1-7-4 有機場效電晶體元件公式............................25
貳、研究動機與方法......................................26
參、實驗部份............................................29
3-1 實驗用藥品..........................................29
3-1-1 清洗矽晶片所用藥品................................29
3-1-2 有機薄膜所用藥品..................................29
3-1-3 合成用藥品........................................29
3-2 基材來源............................................30
3-3 實驗用儀器與技術....................................31
3-3-1 真空蒸鍍設備(vaccum deposition system)............31
3-3-2 核磁共振儀(Nuclear Magnetic Resonance, NMR).......31
3-3-3 橢圓儀(Ellipsometry) .............................31
3-3-4 紅外線光譜儀......................................31
3-3-4-1傅立葉紅外線光譜儀(Fourior Transform Infrared Spectrometer;FT-IR)....................................31
3-3-4-1a 原理...........................................32
3-3-4-2 漸減式全反射紅外線光譜儀(Attenuated Total Reflectance Infrared Spectrometer;ATR-IR)..............33
3-3-4-2a 原理...........................................33
3-3-5 原子力顯微鏡(Atomic Force Microscopy, AFM) .......34
3-3-5-1 原理............................................34
3-3-6 顯微拉曼光譜分析儀(Microscopic Raman Spectrometer)37
3-3-6-1 類型............................................37
3-3-7 紫外-可見光光譜儀(UV-Visible Spectrophotometer)...39
3-3-8 旋轉塗布器(Spin Coating System) ..................39
3-3-9 蠕動馬達儀........................................39
3-3-10 X光繞射儀(Powder X-ray Diffraction) .............39
3-3-11 近緣X-射線吸收微組態光譜(Near Edge X-ray Absorption Fine structure,NEXAFS,Spectroscopy) ..................40
3-3-11-1 原理...........................................40
3-4 有機薄膜的製備......................................43
3-4-1 矽晶片的清洗......................................43
3-4-2 將金屬蒸鍍於矽晶片上..............................44
3-4-3 雙炔基有機酸在銀表面自組裝單分子薄膜製備及照光反應44
3-4-3a 浸泡方式製程.....................................44
3-4-3b 沖堤方式製程.....................................44
3-4-4 刷磨自組裝單層膜的製備............................45
3-4-5 雙炔基有機酸經由真空蒸鍍方式的薄膜製備及照光反應..46
3-4-6 電極之製備........................................46
3-5 材料合成............................................47
3-5-1 汞錯合物之合成....................................47
3-5-2 1-溴-1-十六炔之合成...............................47
3-5-3 5,7-雙炔基二十二烷基酸之合成......................48
3-5-4 10,12-雙炔基二十七烷基酸之合成....................49
3-5-5 1,3-雙炔基十三烷基三甲基矽烷之合成................49
3-5-6 1,3-十三雙炔之合成之合成..........................50
3-5-7 1-烯-12,14-雙炔基二十四烷之合成...................50
3-5-8 12,14-雙炔基二十四烷基三氯矽烷之合成..............51
3-5-9 1-烯-6,8-雙炔基十八烷之合成.......................52
3-5-10 6,8-雙炔基十八烷基三氯矽烷之合成.................52
肆、結果與討論..........................................53
4-1 合成的討論..........................................53
4-2 酸在銀表面的自組裝薄膜分析..........................58
4-2-1 反射式紅外線光譜分析..............................60
4-2-2 拉曼光譜分析......................................64
4-2-3 近緣X-射線吸收微組態光譜(NEXAFS)分析..............66
4-3 不同酸在鋁表面的自組裝薄膜分析......................71
4-3-1 反射式紅外線光譜分析..............................71
4-3-2 拉曼光譜與橢圓儀測量分析..........................73
4-4 不同三氯矽烷分子在矽表面的自組裝薄膜分析............76
4-4-1 漸弱式全反射紅外線光譜與橢圓儀測量分析............76
4-4-2 反射式UV吸收光譜分析..............................79
4-4-3 電性的探討........................................81
4-5 5,7-雙炔基二十二烷基酸(簡稱166)、10,12-雙炔基二十七烷基酸 (簡稱1611)和10,12-雙炔基二十五烷基酸(簡稱1411)分子蒸鍍膜的探討................................................85
4-5-1 穿透式紅外線光譜分析..............................87
4-5-1a 蒸鍍雙炔基有機酸分子.............................87
4-5-2 UV吸收光譜分析....................................93
4-5-3 原子力顯微鏡結果討論..............................94
4-5-3a 166酸分子........................................95
4-5-3b 1411酸分子......................................103
4-5-3c 1611酸分子......................................111
4-5-4 X-ray繞射光譜的探討.............................116
4-5-5 電性的探討.......................................117
4-5-5a 166酸分子.......................................117
4-5-5b 1411酸分子......................................121
4-5-5c 1611酸分子......................................124
伍、結論...............................................127
陸、參考文獻...........................................128
柒、附圖...............................................134
參考文獻 1. Xiao, K.; Liu, Y.; Guo, Y.; Yu, G.; Wan, L.; Zhu, D. “Influence of self-assembly monolayers on ghe characteristics of copper phthalacyanine thin film transistor.” Appl. Phys. A 2003.
2. Cui, J.; Huang, Q. L.; Wang, Q. W.; Marks, T. J. Langmuir 2001, 17, 2051.
3. Kymissis, I.; Dimitrakopoulos, C. D.; Purushothaman, S. IEEE Trans. Electron Devices 2001, 48, 1060.
4. Wegner, G., Z. Naturforsch 1969, 24, 824.
5. Bloor, D.; Chance, R.R. Polydiacetylenes: Synthesis, structure and electronic properties1985.
6. Schmidt, G. M. J., Solid state photochemistry. ed.; Verlag Chemie: Weinheim, 1976.
7. Takami, K.; Mizuno, J.; Akai-Kasaya, M.; Saito, A.; Aono, M.; Kuwahara, Y. J. Phys. Chem. B 2004, 108, 16353.
8. Nalwa, H. S., Miyata, S., ed.; CRC Press: Boca Raton, FL, 1998.
9. Burs, A. R.; Carpick, R.W.; Sasaki, D.Y. Tribology. Letters. 2001, 10, 89.
10. Schott, M. J. Phys. Chem.B 2006, 110, 15864.
11. Carpick, R. W.; Sasaki, D. Y. J. Phys. Condens. Matter 2004, 16, R679.
12. Dobrosavljević, V.; Stratt, R. M. Physical Review B 1987, 35, 2781.
13. Sasaki, D. Y.; Carpick, R. W.; Burs, A. R. J. Colloid and Interface Science 2000, 229, 490.
14. Huo, Q.; Russell, K. C.; Leblanc, R. M. Langmuir 1999, 15, 3972.
15. Tieke, B.; Wegner, G.; Naegele, D.; Ringsdorf, H. Angew. Chem. Int. Ed. Engl. 1976, 15, 764.
16. Lieser, G.; Tieke, B.; Wegner, G. Thin Solid Film 1980, 68, 77.
17. Day, D.; Lando, J. B. Macromolecules 1980, 13, 1478.
18. Mino, N.; Tamura, H.; Ogawa, K. Langmuir 1991, 7, 2336.
19. Cao, G.; Mallouk, T. E. J. Solid State Chem. 1991, 94, 59.
20. Kuriyama, K.; Kikuchi, H.; Kajiyama, T. Langmuir 1996, 12, 2283.
21. Batchelder, D. N.; Evans, S.D.; Freeman, T. L.; Haussing, L.; Ringsdorf, H.; Wolf, H. J. Am. Chem. Soc. 1994, 116, 1050.
22. Bigelow, W. C.; Pickett, D. L.; Zisman, W. A. Collid Interface Sci. 1946, 1, 513.
23. Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
24. Sagiv, J. J. Am. Chem. Soc. 1980, 102, 92.
25. Fenter, P.; Eberhardt, A.; Eisenberger, P. Science 1994, 266, 1216.
26. Delamarche, E. ; Michel, B. ; Kang, H. ; Gerber, C. Langmuir 1994, 10, 4103.
27. Fenter, P. ; Eisenberger, P. ; Li, J. ; Camillone III, N. ; Bernasek, S. ; Scoles, G.; Ramnanarayanan, T. A.; Liang, K. S. Langmuir 1991, 7, 2013.
28. Dhirani, A.; Hines, M. A.; Fisher, A. J.; Ismail, O.; Guyot-Sionnest, P. ibid 1995, 11, 2609.
29. Keller, H.; Sirnak, P.; Schrepp, W.; Dembowski, J. Thin Solid Film 1994, 244, 799.
30. Itoh, M.; Nishihara, K.; Aramaki, K. J. Electrochem. Soc. 1995, 117, 12528.
31. Schonherr, H.; Ringsdorf, H. ibid 1996, 12, 3891.
32. Biebuyck, H. A.; Whitesides, G. M. Langmuir 1994, 10, 1825.
33. Lee, T. R.; Laibinis, P. E.; Folkers, J. P.; Whitesides, G. M. Pure Appl. Chem. 1991, 63, 821.
34. Folkers, J. P.; Gorman, C. B.; Laibinis, P. E.; Buchholz, S.; Whitesides, G. M.; Nuzzo, R. G. Langmuir 1995, 11, 813.
35. Allara, D. L.; Nuzzo, R.G.; Langmuir 1985, 1, 54.
36. Laibinis, P. E.; Hickinan, J. J.; Wrighton, M. S.; Whitesides, G. M. Science 1989, 245, 845.
37. Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115, 9547.
38. Ulamn, A. An Introduction to Ultrathin Organic Films:From Langmuir-Blodgett to Self-assembly. ed.; Academic Press: Boston, 1991.
39. Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. J. Am. Chem. Soc. 1990, 112, 570.
40. Shand, M. L.; Chance, R. R. Phys. Rev. B 1982, 25, 4431.
41. Allara, D. L.; Nuzzo, R.G. Langmuir 1985, 1, 45.
42. Ogawa, H.; Chihera, T.; Taya, K.; J. Am. Chem. Soc. 1985, 107, 1365.
43. Schlotter, N. E.; Porter, M. D.; Bright, T. B.; Allara, D. L. Chem. Phys. Lett. 1986, 132, 93.
44. Tao, Y. T.; Lee, M. T.; Chang, S. C. J. Am. Chem. Soc. 1993, 115, 4350.
45. Ulamn, A. Chem. Rev. 1996, 96, 1533.
46. Carpick, R. W.; Mayer, T. M.; Sasaki, D. Y.; Burns, A. R. Langmuir 2000, 16, 4639.
47. Du, Q. ; Freysz, E. ; Shen, Y. R. Science 1994, 264, 826.
48. Bain, C. D. J. Chem. Soc. Faraday Trans. 1995, 91, 1281.
49. Folkers, J. P.; Laibinis, P. E.; Whitesides, G. M. Langmuir 1992, 8, 1330.
50. Franklin, B. Phil. Trans. R. Soc. 1774, 64, 445.
51. Pockels, A. Nature 1891, 43, 437.
52. Rayleigh, L. Phil. Mag. 1899, 48, 321.
53. Devaux, H. Smithsonian Institute Ann. Rep. 1913, 261.
54. Hardy, W. B. Proc. R. Soc. A. 1912, 86, 610.
55. Langmuir, I. J. Am. Chem. Soc. 1917, 39, 1848.
56. Blodgett, K. A. J. Am. Chem. Soc. 1935, 57, 1007.
57. Weng, S. Z.; Hu, W. S.; Kuo, C. H.; Tao, Y. T. Appl. Phys. Lett. 2006 , 89, 172103.
58. Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem., 2005, 15, 53.
59. Dimitrakopoluos, C. D.; Malenfant, P. R. L. Adv. Mater., 2002, 14, 99.
60. Holstein, T. Ann. Phys. 1959, 8, 325.
61. Silinsh, E. A.; Klimkans, A.; Larsson, S.; Cápek, V. Chem. Phys. 1995, 198, 311.
62. Silinsh, E. A.; Cápek, V. Organic Molecular Crystals. Interaction, Localization and Transport Phenomena, American Institute of Physics Press, New York, 1994.
63. Robertson, G. G.; Aspley, N.; Munn, R. W. Physics Reports 1980, 60, 59.
64. Baessler, H.; Sariciftci, N. S. in Primary Photoexcitations in Conjugated Polymers: Molecular versus Semiconductor Band Model
65. Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J.; J. Appl. Phys. 2002, 92, 5259.
66. (a) Babel, A.; Jenekhe, S. A. J. Phys. Chem. B, 2003, 107, 1749.
(b) Park, S. K.; Kim, Y. H.; Han, J. I.; Moon, D. G.; Kim, W. K.;
Kwak, M. G. Synth. Met., 2003, 139, 377.
67. Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C. C.; Jackson, T. N. J. Am. Chem. Soc., 2005, 127, 4986.
68. Chou, W. Y.; Cheng, H. L. Adv. Funct. Mater., 2004, 14, 811.
69. Binnig, G.; Quate, C. F.; Gerber, Ch. Phys. Rev. Lett. 1986, 56, 930.
,
70. (a) CHEMISTRY (THE CHINESE CHEM. SOC.,TAIPEI) March.
2005, 63, No.1.
(b) Stohr, J. Nexafs Spectroscopy (Springer eries in Surface Sciences,
No 25), 1992.
71. Garnier, F.; Yassar, R.; Hajlaoui, G.; Horowitz, F.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716.
72. Singh, A.; Schnur, J. M. Syn. Comm. 1986, 16, 847.
73. Zeni, G.; Panatieri, R. B.; Lissner, E.; Menezes, P. H.; Braga, A. L.; Stefani, H. A. Org. Lett. 2001, 3, 819.
74. Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi A. Tetrahedron 2006, 62, 5126.
75. Fiandanese, V.; Bottalico, D.; Marchese, G.; Punzi A. Tetrahedron 2004, 60, 11421.
76. Lewis, L. N.; Colborn, R. E.; Grade, H.; Bryant, G. L.; Sumpter, J. C. A.; Scott, R. A. Organometallics 1995, 14, 2202.
77. Wang, Y.; Hu, S.; Brittain, W. J. Macromolecules 2006, 39, 5675.
78. Matyjaszewski, K.; Miller, P. J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B. B.; Siclovan, T. M.; Kickelbick, G.; Vallant, T.; Hoffmann, H.; Pakula, T. Macromolecules 1999, 32, 8716.
79. Snyder, R. G. J. Molecular Spectroscopy 1960, 4, 411.
80. Tao, Y.-T.; Hietpas, G. D.; Allara, D. L. J. Am. Chem. Soc. 1996, 118, 6724.
81. Allara, D. L.; Nuzzo, R. G. Langmuir 1985, 1, 52.
82. Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406.
83. Nishide, J.; Oyamada, T.; Akiyama, S.; Sasabe, H.; Adachi, C. Adv. Mater. 2006, 18, 3120.
84. Sakaki, S. Coordination Chem. Rev. 1999, 190-192, 933-960
85. Bloor, D. Polydiacetylenes, 1985
指導教授 陶雨臺(Yu-Tia Tao) 審核日期 2007-12-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明