博碩士論文 942203048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:54.198.246.164
姓名 陳育修(Yu-hsiu Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究
(Structural characterization and dynamic properties of organic-inorganic hybrid electrolytes based on alkoxysilane modification)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究
★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用
★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用
★ 中孔洞碳材於高效能鋰離子電池之應用★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用
★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用
★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用★ 以金屬氧化物ZnO及MgO修飾有序中孔洞碳材CMK-8於高效能鋰離子電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究著重於製備與鑑定有機/無機複合式高分子電解質根據poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED600、ED900、ED2000) 和過氯酸鋰共混合經由 TEOS 和 3-(Triethoxysilyl)propyl isocyanate 共水解。乾燥的有機/無機複合式高分子電解質經過以重量比 1:1 的 EC/PC 電解液混合液,然後獲得塑化。離子導電度經由塑化後上升2個級數,達到室溫最高導電度 2.11×10-3 S/cm。由 DSC、TGA、FT-IR、SEM、XRD、AC-Impedance 和 Solid State NMR光譜用來鑑定複合式高分子電解質結構和動力學特性和離子遷移率。根據熱差式掃描卡計儀結果,玻璃轉化溫度隨著鋰鹽的增加而上升。用 2D 1H-13C WISE (WIdeline SEparation) NMR 技術,複合式高分子電解質系統的動力學能夠被定量的確定由測量在 F1 dimension 上的 1H 的譜寬和在 F2 dimension 上結構相關連的碳譜,而且,乾式複合式高分子電解質的 7Li 擴散係數由 Pulse Gradient Spin- Echo 和離子導電度相關。
摘要(英) This research focus on the preparation and characterization of organic–inorganic hybrid electrolytes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED600、ED900、ED2000) complexed with LiClO4 via the co-condensation of tetraethoxysilane (TEOS) and 3-(triethoxysilyl)propyl isocyanate. The dry organic–inorganic hybrid electrolytes thus obtained were also plasticized by a solution of ethylene carbonate (EC)/propylene carbonate (PC) mixture (1:1 by volume). The ionic conductivity of the dry hybrid electrolyte films was enhanced by two orders of magnitude via plasticization, reaching a maximum conductivity value of 2.11×10-3 S/cm of the polymer molecule weight 2000 at 30℃. A variety of techniques such as DSC、TGA、FT-IR、SEM、XRD、AC Impedance and solid state NMR spectroscopy are performed to elucidate the realtionship between the structural and dynamic properties of the hybrid electrolyte and the ion mobility. According to DSC results, the glass transition temperature (Tg) raised with increasing the lithium salt content. By means of 2D 1H-13C WISE (WIdeline SEparation) NMR, the dynamic information within such a hybrid system can be qualitatively assessed by examining the proton line shapes in the F1 dimension that are directly related to structural elements resolved in the 13C CP/MAS NMR spectrum in the F2 dimension. Furthermore, the 7Li diffusion coefficients of the dry hybrid electrolytes were determined by pulsed gradient spin-echo (PGSE) experiment to correlate with the behavior of the ion conductivity.
關鍵字(中) ★ 玻璃轉換溫度
★ 擴散係數
★ 離子導電度
★ 有機/無機複合式高分子電解質
關鍵字(英) ★ Organic-inorganic hybrid electrolytes
★ ion conductivity
★ glass transition temperature
★ self-diffusion coefficients
論文目次 中文摘要……………………………………………………………………………………….I
英文摘要………………………………………………………………………………………II
謝誌……………………………………………………………………………………….. …IV
目錄…………………………………………………………………………………………....V
圗目錄………………………………………………………………………………………VIII
表目錄………………………………………………………………………………………....X
第壹章 緒論…………………………………………………………………………………..1
1-1. 前言…………………………………………………………………………………...1
1-2 鋰電池與鋰二次電池簡介…………………………………………………………..2
1-3. 高分子電解質簡介…………………………………………………………………...6
1-4. 固態高分子電解質…………………………………………………………………...6
1-4-1. 交聯高分子電解質………………………………………………………………7
1-4-2. 共聚高分子電解質………………………………………………………………8
1-4-3. 接枝高分子電解質………………………………………………………………9
1-4-4. 混摻高分子電解質………………………………………………………………9
1-4-5. 複合高分子電解質………………………………………………………………9
1-4-6. 單離子高分子電解質…………………………………………………………..10
1-4-7. Polymer-in-Salt Polymer Electrolyte……………………………………………11
1-4-8. Ormolytes / Ormocer……………………………….……………………………11
1-5. 膠態高分子電解質………………………………………………………………….12
1-6. 微孔型高分子電解質……………………………………………………………….13
1-7. 溫度效應對高分子電解質導電度的影響………………………………………….16
1-8. 研究動機與目的…………………………………………………………………….17
第貳章 文獻回顧…………………………………………………………………………....19
2-1. 高分子電解質之發展……………………………………………………………….19
2-2. 奈米複合高分子電解質發展……………………………………………………….22
2-3. 聚氨基甲酸酯……………………………………………………………………….23
2-4. 聚氨基甲酸酯熱性質……………………………………………………………….27
第參章 實驗部分與原理……………………………………………………………………28
3-1. 實驗藥品…………………………………………………………………………….28
3-2. 儀器設備…………………………………………………………………………….29
3-3. 高分子電解質薄膜之製備………………………………………………………….30
3-3-1. 固態高分子電解質薄膜之製備………………………………………………..30
3-3-2. 膠態高分子電解質膜之製備…………………………………………………..32
3-4. 儀器分析原理及操作條件………………………………………………………….33
3-4-1. 微差掃瞄熱卡計 (DSC)…....………………………………………………….33
3-4-1-1. 原理…………………………………………………..................................33
3-4-1-2. 樣品製備……………………………………………..................................34
3-4-2. 熱重量分析儀 (TGA)………..………….....……………..................................35
3-4-2-1. 原理…………………………………………………..................................35
3-4-2-2. 樣品製備……………………………………………..................................35
3-4-3. 傅立葉紅外線吸收光譜儀 (FT-IR) ……………………..................................35
3-4-3-1. 原理………………………………………………………………………..35
3-4-3-2. FT-IR之操作程序………………………………………….........................38
3-4-4. 掃瞄式電子顯微鏡 (SEM)....…………………………………………………39
3-4-2-1. 原理…………………………………………………...................................39
3-4-2-2. 樣品製備……………………………………………...................................40
3-4-5. X光繞射儀 (XRD)……………………………………………………………..40
3-4-5-1. 原理…………………………………………………..................................40
3-4-5-2. 樣品製備…………...……………………………………………………...41
3-4-6. 交流阻抗儀 (AC-Impedance)...………………………………………………41
3-4-6-1. 原理…………………………………………………...................................41
3-4-6-2. 操作程序……………………………………………...................................45
3-4-7. 液態核磁共振光譜儀 (Solution NMR)………………………………………..45
3-4-7-1. 原理…………………………………………………..................................45
3-4-7-2. 樣品製備……………………………………………..................................46
3-4-8. 固態核磁共振光譜儀 (Solid State NMR)……………………………………..46
3-4-8-1. 原理簡介……………………………………………...................................46
3-4-8-2. 常用固態核磁共振技術……………………………...................................57
3-4-8-3. 樣品製備……………………………………………...................................62
第肆章 結果與討論………………………………………………………………………..63
4-1. 固態高分子電解質………………………………………………………………….63
4-1-1. 微差式掃瞄熱卡計儀 (DSC) 圖譜分析X-ray 粉末繞射圖譜分析…………64
4-1-2. 熱重量分析 (TGA)…………………………………………………………….69
4-1-3. 紅外吸收光譜之鑑定 (FT-IR)…..……………………………………………..73
4-1-4. 掃瞄式電子顯微鏡 (SEM) 電解質薄膜表面分析…………………………...83
4-1-5. X-ray 粉末繞射 (Power X-ray Diffraction) 分析.….…………………………90
4-1-6. 固態高分子電解質之導電度量測……………………………………………..92
4-1-7. 液態核磁共振光譜分析………………………………………………………..99
4-1-8. 固態核磁共振光譜分析………………………………………………………102
4-1-8-1. 13C CP / MAS NMR……………………………………………………….……………….102
4-1-8-2. 2D 1H - 13C WISE (WIdeline SEparation) NMR………………………..110
4-1-8-3. 29Si CP / MAS……….….……………………………………………….113
4-1-8-4. 29Si MAS NMR……………………….…………………………………114
4-1-8-5. 7Li譜寬分析……….………………………………................................119
4-1-8-6. 7Li-{1H} MAS NMR….………..…………………................................126
4-1-8-7. 7Li 擴散常數 (Diffusion Constant) 測量…..……................................131
第伍章 結 論………………………………………………………………………………138
參考文獻……………………………………………………………………………………140
參考文獻 1. 孫清華, 最新可充電電池技術大全, 90 年6 月
2. S.Yoda and K. Ishihara, J. Power Sources, 1999, 81/82, 162
3. 薛立人, 二次電池之回顧與展望, 工業材料, 1999, 146, 70
4. Peled, E., J. Electrochem. Soc., 1979, 126, 2047
5. Peled, E.; Golodnitsky, D.; Ardel, G. and Eshkenazy, V., Electrochim. Acta, 1995, 40, 2197
6. Peled, E.; Golodnitsky, D. and Ardel, G., J. Electrochem. Soc., 1997, 144,L208
7. Peled, E.; Golodnitsky, D. and Penciner, J., The anode/electrolyte
interface, in Handbook of Battery Materials, J. O. Besenhard, Editor,
p.419-456, Wiley-VCH, Weinheim, Germany, 1999
8. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212
9. Scrosati, B., J. Electrochem. Soc., 1992, 139, 2776
10. Selim, R. and Bro, P., J. Electrochem. Soc., 1974, 121, 1457
11. Raul, R. D.; Brummer, S. B., Electrochim. Acta, 1977, 22, 75
12. Aurbach, D.; Ein-Eli, Y.; Markovsky, B.; Zaban, A.; Luski,
S.;Carmeli, Y.; Yamin, H., J. Electrochem. Soc., 1995, 142, 2882
13. Ein-Eli, Y.; Markovsky, B.; Aurbach, D.; Carmeli, Y.; Yamin, H.;
Luski, S., Electrochim. Acta, 1994, 39, 2559
14. Chusid, O.; Ein Ely, Y.; Aurbach, D.; Babai, M.; Carmeli, Y., J.
Power Sources, 1993, 43/44, 47
15. Aurbach, D.; Ein-Eli, Y.; Chusid, O.; Carmeli, Y.; Babai, M.; Yamin,
H., J. Electrochem. Soc., 1994, 141, 603
16. Ein-Eli, Y., Electrochem. Solid-State Lett., 1999, 2, 212
17. Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W., J. Power
Sources, 1993, 54, 228
18. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1996,
143, L195
19. Ein-Eli, Y.; Thomas, S. R.; Koch, V. R., J. Electrochem. Soc., 1997,
144, 1159
20. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
140, 922
21. Wilkinson, D.; Dahn, J. R. U.S. Patent 5, 130, 211, 1992
22. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
140, L101
23. Shu, Z. X.; McMillan, R. S.; Murray, J. J., J. Electrochem. Soc., 1993,
140, 922
24. Wang, C.; Nakamura, H.; Komatsu, H.; Yoshio, M.; Yoshitake, H., J.
Power Sources, 1998, 74, 142
25. Simon, B.; Boeuve, J. P. U.S. Patent 5, 626, 981, 1997
26. Barker, J.; Gao, F. U.S. Patent 5, 712, 059, 1998
27. Naruse, Y.; Fujita, S.; Omaru, A. U.S. Patent 5, 714, 281, 1998
28. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.;
Heider, U., Electrochim. Acta, 2002, 47, 1423
29. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., J. Electrochem. Soc.,
1999, 146, 470
30. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., Electrochim. Acta,
2000, 45, 1893
31. Matsuo, Y.; Fumita, K.; Fukutsuka, T.; Sugie, Y.; Koyama, H.; Inoue,
K., J. Power Sources, 2003, 119/121, 373
32. Blomgren, G. E., J. Power Sources, 2003, 119/121, 326
33. Proceedings of 2004 Taipei International Power Forum, The Solid
Electrolyte Interface(SEI)in Lithium Batteries:Understanding and
Misunderstanding, 2004, B-5
34. Xu, K, Chem. Rev., 2004, 104, 4303
35. Meyer W. H., Adv. Mater., 1998, 10, 439
36. Tonge, J. S.; Shriver, D. F., J, Electrochem. Soc., 1987, 134, 269
37. Fauvarque, J. F., Electrochimica Acta, 2000, 40(13-14), 2295
38. Gozdz, A.S.; Tarascon, J.M.; Warren, P.C.; Schmutz, C.N., Shokoohi,
F.K., Proceedings of the Fifth International Symposium on Polymer
Electrolyte, Uppsala, Sweden, 11-16 August, 1996, Paper0-12
39. Shriver, D. F., Macromolecules, 1986, 19, 1508
40. Shibata, M., Kobayash, T., European Polymer Journal, 2000, 36, 485
41. Fujinami, T.; Tokimune, A.; Mehta, M. A.; Shriver, D. F.; Rawsky, G.C., Chem. Mater. 1997, 9, 2236
42. Mandal, B. K.; Walsh, C. J.; Sooksimuang, T.; Behroozi, S. J., Chem.
Mater. 2000, 12, 6
43. Angell, C. A.; Liu, C.; Sanzhez, E., Naure, 1993, 362(6416), 137
44. deAzevedo, E. R. ; Reichert, D.; Vidoto, E. L. G.; Dahmouche, K.;
Judeinstein, P., Chem. Mater., 2003, 15, 2070
45. Judeinstein, P.; Brik, M. E.; Bayle, J. P.; Courtieu, J.; Rault, J., Mater.
Res. Soc. Symp. Proc., 1994, 346, 937
46. Brik, M. E.; Titman, J. J.; Bayle, J. P.; Judeinstein, P., J. Polym.Sci.,
Part B: Polym. Phys., 1996, 34, 2533
47. Lesot, P.; Chapuis, S.; Bayle, J. P.; Rault, J.; Lafontaine, E.; Campero, A.; Judeinstein, P., J. Mater. Chem., 1998, 8, 147
48. Feullade, G. P.J. Perche, Appl. Electrochem., 1975, 63, 5
49. Kim, Y. T.; Smotkin, E. S., Solid State Ionics, 2002, 149, 29
50. Ito, Y.; Kanehori, K.; Miyauchi, K.; Kudo, T., J. Mater. Sci., 1987, 22, 1845
51. Watanabe, M.; Kanba, M.; Matsuda, H.; Mizoguchi, K.; Shinohara, I.;
Tsuchida, E., Chem.-Rapid. Commun., 1981, 2, 741
52. Gozdz,A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5, 418, 091,
1995
53. Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M. U.S. Patent 5, 296, 318, 1994
54.Gozdz, A. S.; Schmutz, C. N.; Tarascon, J. M.; Warren, P. C. U.S.
Patent 5, 418, 091, 1995
55. Gozdz, A. S.; Schmutz, C. N.; Warren, P. C. U.S. Patent 5, 460, 904,
1995
56. Sekhon, S. S.; Singh, H. P., Solid State Ionics, 2002, 152-153, 169
57. Teeter, D.; Stephan, A. M., Electrochimica Acta, 2003, 48, 2143
58. Kim, D. W.; Sun, Y. K., J. Power Sources, 2001, 102, 41
59. Michot, T.; Nishimoto, A.; Watanabe, M., Electrochaimica Acta,
2000, 45, 1347
60. Boudin, F.; Andrieu X.; Jehoulet, C., J. Power Sources, 1999, 81/82,
804
61. Murata, K.; Izuchi, S.; Yoshihisa Y., Electrochimica Acta, 2000, 45,
1501
62. M. B. Armand, J. M. Chabagno, M. J. Duclot, “ Fast Ion Transport in
Solids “, P. Vashishta, J. N. Mundy, and G. K. Shenoy, Editors, p131,
NorthHolland, NewYork, 1979
63. Fenton, D. E.; Parker, J. M.; Wright, P. V., Polymer, 1973, 14, 589.
64. Wright, P. V., Polymer, 1975, 7, 319
65. Armand, M. B.; J. M. Chabagno, M. J. Duclot, Second International
Meeting on Solid Electrolytes, St. Andrews, Scotland, September 20-22 (1978).
66. Weston, J. E.; Steele, B. C. H., Solid State Ionics, 1981, 2, 347
67. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P., Solid State Ionics, 1983, 11, 91
68. Shriver, D. F.; Ratner, M. A.; Chem. Rev., 1988, 88, 109
69. Bruce, P. G., Electrochimica Acta, 1995, 40(13-14), 2077
70. Christie, A. M.; Lisowska, O. A.; Vincent, C. A., Electrochimica Acta,
1995, 40(13-14), 2405
71. Christie, L.; Los, P.; Bruce, P. G., Electrochimica Acta, 1995, 40(13-14), 2159
72. Le Granvalet-Mancini, M.; Hanrath, T.; Teeters, D., Solid State Ionics, 2000, 135(1-4), 283
73. Borghini, M. C.; Mastragostino, M.; Zanelli, A., Journal of Power
Sources, 1997, 68(1), 52
74. Benrabah, D.; Sanchez, J. Y.; Armand, M., Solid State Ionics, 1993,
60, 87
75. Benrabah, D.; Sanchez, J. Y.; Deroo, D.; Armand, M., Solid State
Ionics, 1994, 70/71, 157
76. Kao, H. M.; Tsai, Y. Y.; Chao, S. W., Solid State Ionics, 2005, 176(13-14), 1261
77. Rajendran, S.; Mahendran, O.; Kannan, R., Journal of Physics and
Chemistry of Solids, 2002, 63(2), 303
78. Itoh, T.; Horii, S.; Uno, T.; Kubo, M.; Yamamoto, O., Electrochimica
Acta, 2004, 50(2-3), 271
79. Ramesh, S.; Arof, A.K., Materials Science and Engineering: B, 2001,
85(1), 11
80. Wang, Q.; Gao, J.; Qian, Y., European Polymer Journal, 1996, 32(3),
299
81. Aldissi, M., Journal of Power Sources, 2001, 94(2), 219
82. Morales, E.; Acosta, J. L., Solid State Ionics, 1998, 111(1-2), 109
83. Park, C. H.; Kim, D. W.; Prakash, J.; Sun, Y. K., Solid State Ionics,
2003, 159(1-2), 111
84. Forsyth, M.; Meakin, P. M.; MacFarlane, D. R., Electrochimica Acta,
1995, 40(13-14), 2339
85. Rajendran, S.; Sivakumar, M.; Subadevi, R., Materials Letters, 2004,
58(5), 641
86. Qian, X.; Gu, N.; Cheng, Z.; Yang, X.; Wang, E.; Dong, S., Materials
Chemistry and Physics, 2002, 74(1), 98
87. Edelmann, K.; Sandner, B., Solid State Ionics, 2004, 170(3-4), 225
88. Pradhan, D. K.; Samantaray, B. K.; Choudhary, R. N. P.; Thakur, A.
K., Journal of Power Sources, 2005, 139(1-2), 384
89. Yang , X. Q.; Lee, H. S.; Hanson, L.; McBreen, J.; Okamoto, Y.,
Journal of Power Sources, 1995, 54(2), 198
90. Michael, M. S.; Jacob, M. M. E.; Prabaharan, S. R. S.; Radhakrishna,
S., Solid State Ionics, 1997, 98(3-4), 167
91. 洪傳獻, chemistry, 1999, 57, 175
92. Weston, J.; Steel, B.C.H., Solid State Ionics, 1982, 7, 75
93. Wieczorek, W.; Zalewska, A.; Raducha, D.; Florjanczyk, Z.; Stevens,
J.R., J. Phys. Chem. B, 1998, 102, 352.
94. Best, A.S.; Adebarhr, J.; Jacobsson, P.; MacFarlane, D.R.; Forsyth,
M., Macromolecules, 2001, 34, 4549
95. Croce F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.,
J. Phys. Chem. B, 1999, 103, 10632
96. Wierzovek, W.; Lipka, P.; Zukowska, G.; Wycislik, H., J. Phys.
Chem. B, 1998, 102, 6968
97. A.S. Best, A. Ferry, D.R. MacFarlane, M. Forsyth, Solid State Ionics,
1999, 126(3-4), 269
98. Kumar, B.; Scanlon, L.G., Solid State Ionics, 1999, 124(3-4), 239
99. Shin, J. H.; Alessandrini, F.; Passerini, S., J. Electrochem. Soc., 2005, 152, A283.
100. Li, X.; Zhao, Y.; Cheng, L.; Yan, M.; Zheng, X.; Gao, Z.; Jiang, Z.,
J.Solid State Electrochem., 2005, 9, 609.
101. Ahn, J. H.; Wang, G. X.; Liu, H. K.; Dou, S. X., J. Power Sources,
2003, 119-121, 422.
102. Xi, J.; Tang, X, Electrochimica Acta, 2005, 50(27), 5293
103. Reddy, M. J.; Chu, P. P., Journal of Power Sources, 2004, 135(1-2),1
104. Chu, P. P.; Reddy, M. J.; Kao, H. M., Solid State Ionics, 2003,
156(1-2),141
105. Sun, H. Y.; Sohn, H. J.; Yamamoto, O.; Imanishi, N., J. Electrochem.
Soc., 1999, 146, 1672
106. Sun, H.Y.; Takeda, Y.; Imanishi, N.; Yamamoto, O.; Sohn, H. J., J.
Electrochem. Soc., 2000, 147, 2462
107. Itoh, T.; Ichikawa, Y.; Uno, T.; Kubo, M.; Yamamoto, O., Solid State
Ionics, 2003, 156, 393
108. Liao, C. S.; Ye, W. B., Materials Chemistry and Physics, 2004, 88(1), 84
109. Liao, C. S.; Ye, W. B., Electrochimica Acta, 2004, 49(27), 4993
110. 傅明源、孫酣經,聚氨酯彈性體及其應用,化學工業出版社,
p.12~14、28~31(2001)
111. 朱呂民,聚氨酯合成材料,江蘇科學技術出版社,p.15~16、58~61、375(2002)
112. N.S. Schheider, C.R. Desper, J.L. Illinger, and A.O. King, J.
Macromol. Sci-Phys., 1975, B11, 527
113. X. Xu,W.J.Macknight, C.H. Chen,and E.L. Thomas, Polymer ,1983, 24 ,1327
114. C. Amold, Jr., J. Elast. Plast., 1974, 6, 238
115. C. Li, X. Yu, T.A. Speckhand, and S.L. Cooper, J. Polym. Sci., Polym. Phys. Ed., 1988, 21, 315
116. J.W.C. Van Bogart, P.E. Gibson, and S.L. Cooper, J. Polym. Sci., Polym. Phys. Ed., 1983, 21, 65
117. B. Bengtson, C. Fegger,W.J. Macknight, and N.S. Schnieder, Polymer 1985, 26, 895
118. C.M. Brunette, S.L. Hsu, M. Rossman,W.J. Macknight, and N.S. Schn- -eider, Polym. Eng. Sci., 1981, 21, 668
119. V.S.C. Chang, J.P. Kennddy, Polym. Bull., 1983, 8, 69
120. T.A. Spekhard, P.E. Gibson, S.L. Cooper, V.S.C. Chang, and J.P. Kennedy, Polymer, 1985, 26, 55
121. T.A. Speckhard, K.K.S. Hwang, S.L. Cooper, V.S.C. Chang, and J.P.
Kennedy, Polymer, 1985, 26, 70.
122. T.A. Speckhard, G. Ver Strate, P.E. Gibson, and S.L. Cooper, Polym.
Eng. Sci.,1983, 23, 337
123. N.S. Schneider and W. Matton, Polym, Eng. Sci., 1979, 19, 1122
124. Y. Camberlin, J.P. Pascault, M. Letoffe, and P. Claudy, J. Polym. Sci., Polym. Phys. Ed., 1982, 20, 1445
125. T.A. Spekhard and S.L. Cooper, Rubber Chem. Tech., 1986, 59, 405
126. P.W. Ryan, Brit. Polym. J., 1971, 3, 415
127. C.M. Brunette, S.L. Hsu,W.J. Macknight, and N.S. Schneider, Polym
Eng. Sci., 1981, 21, 163
128. K. Ono, H. Shimada, T. Nishimura, S. Yamashita, H. Okamoto, and Y.F. Minorua, J. Appl. Polym. Sci., 1977, 21, 3323
129. G.N. Pertrov and A.S. Lyskin, Polym. Sci. USSR, 1977, 20, 1351
130. Xu, M., Macknight, W. J., Chen, C. H. Y. and Thomas,
L. ,Polymer,1983, 24,1327.
131. Chen, C. H. Y., Briber, R. M., Thomas, E. L., Xu, M. and Macknight, W. J., Polymer,1983, 24, 1333.
132. Li, C., Goodman, S. L., Albercht, R. M. and Cooper, S. L., Macromolecules, 1988 ,21,2367.
133. Cohen, D. and Siegmann, A., Polymer. Eng. Sci., 1987, 27, 296.
134. Siegmann, A. and Cohen, D., Polymer. Eng. Sci., 1987, 27,1189.
135. Chen, T. K., Hwung, C. J. and Hou, C. C., Polymer. Eng. Sci., 1992, 32,115.
136. Speckhard, T. A. Gibson, P. E., Cooper, S. L. Chang, V. S. C. and Kennedy, J. P., Polymer, 1985, 26, 55.
137. Xu, Y., Nagarajan, M. R., Grasel, T. G., Gibson, P. E. and Cooper, S. L., J. Polym. Sci. ,Polym. Phys. Edn., 1985, 23, 2319.
138. Phillips, R. A., Stevenson, J. C., Nagarajan, M. R. and Cooper, S. L., J. Macromol. Sci. Phys., 1988, B27, 245.
指導教授 高憲明(Hsien-ming Kao) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明