博碩士論文 942204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.234.214.179
姓名 孫玉齡(Yu-Ling Sun)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Pseudomonas nitroreducens TX1中二氫硫辛醯胺脫氫酶分解辛基苯酚聚氧乙基醇之研究
(Degradation of octylphenol polyethoxylates by dihydrolipoamide dehydrogenase from Pseudomonas nitroreducens TX1)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 烷基苯酚聚氧乙基醇 (alkylphenol polyethoxylates, APEOn)是一種非離子界面活性劑,結構為苯環的對位分別接上支鏈辛基及平均9.5個單位的聚氧乙基鏈之混合物,廣泛被應用於家庭日常生活中與工業上,也因之流放到環境中。其中間代謝產物烷基苯酚 (如壬基苯酚、辛基苯酚)具有雌激素活性,累積在環境中對環境生態與人類生殖造成影響,然而環境中之微生物及酵素分解烷基苯酚聚氧乙基醇與烷基苯酚的代謝機制卻尚未了解。先前本實驗是從一株能以0.05-20% (v/v) 辛基苯酚聚氧乙基醇 (octylphenol polyethoxylates,OPEOn)為唯一碳源生長的Pseudomonas nitroreducens TX1中,發現菌體之耗氧活性比不生長在此界面活性劑中高20倍,乃純化出一個具耗氧活性的酵素:二氫硫辛醯胺脫氫酶 (dihydrolipoamide dehydrogenase, LipDH)。同時在功能性蛋白質體學分析中,發現此酵素在以0.5 % OPEOn為唯一生長碳源,而增強表現4.6倍,以RT-PCR也驗證了在mRNA層次上亦有增加。本研究以重組DNA方法,構築dihydrolipoamide dehydrogenase之融合蛋白質表現在大腸桿菌中,經純化此酵素,以探討此脫氫酶與分解OPEOn的關係。以液相層析質譜儀分析發現dihydrolipoamide dehydrogenase能降解OPEOn之ethoxylate鏈,且ethoxylate鏈越長者,H2O2生成量與分解速率成正相關,被切短之速率也越快。其乃因dihydrolipoamide dehydrogenase能在NADH過量的情形下產生H2O2,同時此酵素可還原過量之鐵離子成亞鐵離子,當H2O2和亞鐵離子共存時發生Fenton reaction,因此產生hydroxyl radical,便攻擊OPEOn的ethoxylate chain,造成鏈的縮短而分解。Dihydrolipoamide dehydrogenase在大多數生物中皆存在,其生理功能為參與TCA循環中生成succinyl-CoA的反應,這是第一次發表有關於這個脫氫酶與細菌分解界面活性劑相關的報告。
摘要(英) The alkylphenol polyethoxylates (APEOn) are commonly used non-ionic surfactants in industrial, agricultural and domestic applications. The release of APEOn in the environment has resulted in concern due to the accumulated metabolites, nonylphenol and octylphenol, for their estrogenic activity. However, little is known about the enzymes involved in the biodegradation of APEOn. Pseudomonas nitroreducens TX1, was isolated from the drainage on NCU campus, shown to grow on 0.05-20% of octylphenol polyethoxylates (OPEOn) as sole carbon source. An OPEOn-dependent oxygen consumption activity was induced in strain TX1 when grown on OPEOn as sole carbon source. Both gel-based proteomics and RT-PCR demonstrated that the expression such enzyme is up-regulated by OPEOn at both the protein and mRNA levels. Dihydrolipoaide dehydrogenase has been reported in most of the organisms involving in producing of succinyl-CoA from TCA cycle. An oxygen consumption enzyme was isolated and characterized as dihydrolipoamide dehydrogenase. Recombinant fusion protein constructed and expressed as soluble form in E. coli. In vitro, we detect the purified LipDH can produce H2O2 in the presence of excess NADH. This enzyme also catalyzes the reduction of Fe3+ to form Fe2+. In the presence of both H2O2 and Fe2+, Fenton reagent, the OPEOn were shown to be degraded by reducing the ethoxylate chain. The degradation mechanism by cleavage of ethoxylate chain on OPEOn is proposed to be carried by the hydroxyl radical produced from Fenton reaction. This is the first discovery on such as a novel function from bacterial dihydrolipoamide dehydrogenase.
關鍵字(中) ★ 二氫硫辛醯胺脫氫酶
★ 氫氧自由基
★ 烷基苯酚聚氧乙基醇
關鍵字(英) ★ dihydrolipoamide dehydrogenase
★ octylphenol polyethoxylates
★ hydroxyl radical
論文目次 目錄 I
表目錄 II
圖目錄 III
縮寫與全名對照表 IV
壹、緒論 1
一、界面活性劑的性質、種類與使用 1
二、烷基苯酚聚氧乙基醇類及其代謝產物之流佈及影響 2
三、烷基苯酚聚氧乙基醇代謝物之環境荷爾蒙效力 4
四、烷基苯酚聚氧乙基醇之分解 5
五、分解類似化合物之酵素 7
六、研究背景 8
七、本研究目的及大綱 10
貳、材料與方法 11
一、分解菌之培養 11
二、表現載體之建構 12
三、蛋白質純化 13
四、酵素定性 17
五、化學藥品與儀器設備 19
參、結果 21
一、序列分析 21
二、蛋白質表現 21
三、酵素純化 22
四、重組蛋白質定性 24
肆、討論 28
一、酵素定性 28
二、生物轉化OPEOn產物分析 30
三、經Fenton reaction降解OPEOn 31
四、dihydrolipoamide dehydrogenase分解OPEOn的氧乙基鏈之機制 32
伍、結論與建議 34
陸、參考文獻 36
表 44
圖 48
附錄 72
參考文獻 徐秉正。2004。Pseudomonas nitroreducens TX1異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現。國立中央大學生命科學研究所碩士論文。
洪國展。2004。分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性。國立中央大學生命科學研究所碩士論文。
邱凡峰。2005。以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應。國立中央大學生命科學研究所碩士論文。
陳啟祥。2005。以功能性基因體學研究細菌異化辛基苯酚聚氧乙基醇及抗逆境之基因。國立中央大學生命科學研究所碩士論文。
王正雄、張小萍、黃壬瑰、李宜樺、王世冠、洪文宗、陳佩珊。2002。環境荷爾蒙-壬基苯酚殘留調查及其對雄鯉魚生理效應之研究。環境檢驗所環境調查研究年報第9期:p.291-312。
施純榮。由產業特性與趨勢看我國的界面活性劑工業。1997。化工技術年。5: pp.112-117。
黃耀輝、周珊珊、黃國豪。Fenton家族廢水高級氧化處理技術。2001。經濟部工業局工程實務技術研討會論文集。2001.11。
Ahel, M., J. Mcevoy and W. Giger. 1993. Bioaccumulation of the lipophilic metabolites of nonionic surfactants in fresh-water organisms. Environ. Pollut. 79:243-248.
Argyrou A, Sun G, Palfey BA, Blanchard JS. 2003. Catalysis of Diaphorase Reaction Mycobacterium tuberculosis Lipoamide Dehydrogenase Occurs at the EH4 Level. Biochemistry. 42:2218-2228.
Arukwe. A. and Goksoyr, A. 1998. Xenobiotics, xenoestrogen and reproduction disturbances in fish. Sarsia. 83:225-241.
Bennie, D.T., Sullivan, C.A., Lee, H.B., Peart, T.E. & Maguire, R.J. 1997. Occurrence of alkylphenols and alkylphenol monoehtoxylates and diethoxylates in natural-waters of the Laurentian Great-Lakes basin and the upper St-Lawrence-River. The Sci. Total. Environ. 193:263-275.
Bjorn Thiele, Klaus Guther, Milan Johann Schwuger. 1997. Alkylphenol Ethoxylates: Trace Analysis and Environmental Behavior. Chem. Rev. 97:3247-3272.
Blackburn, M. A. and M. J. Waldock. 1995. Concentrations of alkylphenols in rivers and estuaries in England and Wales. Water Res. 29:1623-1629.
Brand, N., Mailhot, G., Bolte, M. 1998. Degradation Photoinduced by Fe(Ⅲ): Method of Alkylphenol Ethoxylates Removal in Water. Environ. Sci. Technol. 32:2715-2720.
Bruschweiler, H., Gamperle, H., Schwager, F. 1983. Tenside Surf. Det. 20:317
Carothers, D. J., G. Pons, and M. S. Patel. 1989. Dihydrolipoamide dehydrogenase: functional similarities and divergent evolution of the pyridine nucleotide-disulfide oxidoreductases. Arch. Biochem. Biophys. 268:409-425.
Chen, H. J., S. L. Huang, and D. H. Tseng. 2004. Aerobic biotransformation of octylphenol polyethoxylate surfactant in soil microcosms. Environ. Technol. 25:201-210.
Destaillats, H., H.M. Hung, and M.R. Hoffmann. 2000. Degradation of Alkylphenol Ethoxylate Surfactants in Water with Ultrasonic Irradiation. Environ. Sci. Technol. 34:311-317.
Eriko Nishio, Yayoi Ichiki, Hiroto Tamura, Shiro Morita, Katuji Watanabe, and Hiromichi Yoshikawa. 2002. Isolation of Bacterial Strains that Produce the Endocrine Disruptor, Octylphenol Diethoxylate, in Paddy Fields. Biosci. Biotechnol. Biochem. 66:1792-1798.
Eriko Nishio, Hiromichi Yoshikawa, Manabu Wakayama, Hiroto Tamura, Shiro Morita, and Yoshifumi Tomita. 2005. Isolation and Identification of Sphingomonas sp. That Yields tert-Octylphenol Monoethoxylate under Aerobic condition. Biosci. Biotechnol. Biochem. 69:1226-1231.
Ferguson, P. L., C. R. Iden, and B. J. Brownawell. 2000. Analysis of Alkylphenol Ethoxylate Metabolites in the Aquatic Environment Using Liquid Chromatography-Electrospray Mass Spectrometry. Anal. Chem. 72:4322-4330.
Ferguson, P. L., C. R. Iden, and B. J. Brownawell. 2001. Distribution and fate of neutral alkylphenol ethoxylate metabolites in a sewage-impacted urban estuary. Environ. Sci. Technol. 35:2428-2435.
Fenton, H.J.H. 1983. Henry John Horstman Fenton. Proc. Chem. Soc. 9:113-118.
Fujii K, Urano N, Ushio H, Stomi M, Iida H, Ushio-Sata N, Kimura S. 2000. Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem(Tokyo). 128:909-916.
Gazaryan, I.G., Krasnikov, B.F., Ashby, G.A., Thorneley, R., Kristal B.S., Brown, A.M. 2002. Zinc Is a Potent Inhibitor of Thiol Oxidoreductase Activity and Stimulates Reactive Oxygen Species Production by Lipoamide Dehydrogenase. The Journal of Biological Chemistry. 277:10064-10072.
Giger, W., Brunner, P. H., Schaffner, C. 1984. 4-nonylphenol in sewage sludge accumulation of toxic metabolites from non-ionic surfactants. Science. 225:623-625.
Gioia, D. D., L. Fambrini, E. Coppini, F. Fava, C. Barberio. 2004. Aggregation-based cooperation during bacterial aerobic degradation of polyethoxylated nonylphenols. Research in Microbiology. 155:761-769.
Hideaki M., N. Masuda, Y. Fujiwara, M. Ike, and M. Fujika. 1994. Degradation of alkylphenol ethoxylates by Pseudomonas sp. strain TR01. Appl. Environ. Microbiol. 60:2265-2271.
Huang, S. L., C. J. Yang, G. L. Guo, and S. H. Chou. 2004. Isolation, identification and properties of bacterial strains degrading octylphenol polyethoxylates. Taiwan Journal of Agricultural Chemistry and Food Science. 42: 356-365.
Jobling, S., Nolan M., Tyler C.R., Brighty G. and Sumpter J.P. 1998. Widespread sexual disruption in wild fish. Environmental Science and Technology. 32: 2498-2506.
John, D.M., White, G.F. 1998. Mechanism for biotransformation of nonylphenol polyethoxylates to xenoestrogens in Pseudomonas putida. J Bacteriol. 180:4332-4338.
Jongejan A., Jongejan J. A., Duine J. A. 1998. Homology model of the quinohaemoprotein alcohol dehydrogenase from Comamonas testosteroni. Prot Eng. 11:185-198.
Kawai, F. 2002. Microbial degradation of polyethers. Appl Microbiol Biotechnol. 58:30-38.
Kawai F., Yamanaka H., Ameyama M., Shinagawa E., Matsushita K. 1985. Identification of the prosthetic group and further characterization of a novel enzyme, polyethylene glycol dehydrogenase. Agric Biol Chem. 49:1071-1076.
Kazuki, M.,Moucun, Y., Akira, O. 2000.Seasonal changes in ethylene oxide chain lenth of poly(oxyethylene)alkylphenol ether nonionic surfactants in three main rivers in Tokyo. Environ Sci Technol 34:343-8.
Kravetz L., Chung H., Guin K. F., Shebs W. T., Smith L. S. 1982. Ultimate biodegradation of an alcohol ethoxylate and a nonylphenol ethoxylate. Household Personal Prod Ind. March:48-72., April:62-70.
Lester J. Reed, M. Koike, M.E. Levitch, F. R. Leach. 1958. Studies on the nature and reactions of protein-bound lipoic acid. J. Biol. Chem. 233:143-158.
Mann, A. H., and Reid, V. W. 1971. Biodegradation of Synthetic Detergents. Evaluation by Community Trials. Part II. Alcohol and Alkylphenol Ethoxylates. J. Am. Oil Chem. Soc. 48:794.
Marshall, M. Siegel, Rushung Tsao, Steven Oppenheimer. 1990. Nonionic Surfactants Used as Exact Mass Internal Standards for the 700-2100 Dalton Mass Range in Fast Atom Bombardment Mass Spectrometry. Anal. Chem. 62:322-327.
Mohanty, J. G., Jaffe, J. S., Schulman, E. S. and Raible, D. G. 1997. A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J. Immunol. Methods. 202:133-141.
Montgomery-Brown, J., Reinhard, M. 2003. Occurrence and Behavior of Alkylphenol Polyethoxylates in the Environment. Environment Engineering Science. 20:471-486.
Neveling, U., Klasen, R., Bringer-Meyer, S. and Sahm, H. 1998. Purification of the Pyruvate Dehydrogenase Multienzyme Complex of Zymomonas mobilis and Identification and Sequence Analysis of the Corresponding Genes. J. Bacteriol. 180:1540-1548.
Nguyen, M. H. and J-C. Sigoillot. 1997. Isolation from coastal sea water and characterization of bacterial strains involved in non-ionic surfactant degradation. Biodegradation 7:369-375.
Nimrod, A. C. and W. H. Benson. 1996. Environmental estrogenic effects of alkylphenol ethoxylates. Crit. Rev. Toxicol. 26: 335-364.
Obradors N, Aguilar J. 1991. Efficient biodegradation of highmolecular weight polyethylene glycols by pure cultures of Pseudomonas stutzeri. Appl Environ Microbiol. 57:2383-2388.
Petrat, F., Paluch, S., Dogruoz, E., Dörfler, P., Kirsch, M., Korth, H.-G., Sustmann, R., de Groot, H. 2003. Reduction of Fe(Ⅲ) Ions Complexed to Physiological Ligands by Lipoyl Dehydrogenase and Other Flavoenzymes in vitro. The Journal of Biological Chemistry. 278:46403-46413.
Rudling, L., Solyom, P. 1974. The investigation of biodegradability of branched nonylphenol ethoxylates. Water Res. 8:115-119.
Scouten, W.H., Torok, F., Gitomer, W. 1973. Purification of lipoamide dehydrogenase by affinity chromatography on propyllipoamide-glass columns. Biochim. Biophys. Acta. 309: 521-524.
Shin Y.-P., W.-M. Kung, J.-C. Chen, C.-H. Yeh, A. H.-J. Wang, T.-F. Wang. 2002. High-throughput screening of soluble recombinant proteins. Protein Science. 11:1714-1719.
Sokatch, J.R. 1988. Purification of branched-chain keto acid dehydrogenase and lipoamide dehydrogenase-valine from Pseudomonas. Methods Enzymol. 166: 342-350.
Starkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M.S., Beal, M.F.. 2004. Mitochondrial ?-Ketoglutarate Dehydrogenase Complex Generates Reactive Oxygen Species. The Journal of Neuroscience. 36:7779-7788.
Stiff, M. J., Rootham, R. C., and Culley, G. E. 1973. The Effect of Temperature on the Removal of Non-Ionic Surfactants during Small-Scale Activated Sludge Sewage-I. Comparison of Alcohol Ethoxylates with a Branched-chain Alkylphenol Ethoxylate. Wat. Res. 7:1003-1008.
Thomas, J.M., J.R.Yordy, J.A. Amador, and M. Alexander. 1986. Rates of dissolution and biodegradation of water-insoluble organic compounds. Appl. Environ. Microbiol. 52:290-296.
Tretter, L., Adam-Vizi, V. 2004. Generation of Reactive Oxygen Species in the Reaction Catalyzed by ?-Ketoglutarate Dehydrogenase. The Journal of Neuroscience. 36:7771-7778.
White, R., Jobling, S., Hoare, S.A., Sumpter, J.P. and Parker, M.G. 1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology. 135:175-182.
Yamanaka H, Kawai F. 1989. Purification and characterization of constitutive polyethylene glycol (PEG) dehydrogenase of a PEG 4000-utilizing Flavobacterium sp. no. 203. J Ferment Bioeng. 67:324-330.
Yamanaka K, Tsuyuki Y. 1983. A new dye-linked alcohol dehydrogenase (vanillyl alcohol dehydrogenase) from Rhodopseudomonas acidophila M402: purification, identification of reaction product and substrate specificity. Agric Biol Chem. 47:2173-2183.
Yamashita M., Tani A., Kawai F. 2005. A new ether bond-splitting enzyme found in Gram-positive polyethylene glycol 6000-utilizing bacterium, Pseudonocardia sp. strain K1. Appl Microbiol Biotechnol. 66: 174–179.
Ying, G.G., B. Williams and R. Kookana. 2002. Environmental fate of alkylphenol ethoxylates-a review. Environ. Internat. 28:215-226.
Yoshimura, K., 1986. Biodegradation and fish toxicity and nonionic surfactants. J. Am. Oil. Chem. Soc. 63:1590-1596.
Zarnt G, Schraeder T, Andreesen. 1997. Degradation of tetrahydrofurfuryl alcohol by Ralstonia eutropha is initiated by an Inducible pyrroloquinoline quinone-dependent alcohol dehydrogenase. Appl Environ Microbiol. 63:4891-4898.
Zhou, M. and Panchuk-Voloshina, N. 1997. A one-step fluorometric method for the continuous measurement of monoamine oxidize activity. Anal. Biochem. 253:169-174.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2006-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明