博碩士論文 942204008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.191.174.168
姓名 曾健寧(Jiang-Ning Tzeng)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 酸敏感G蛋白偶合受體在小鼠背根神經節神經元中的訊息傳導路徑
(The signaling pathways of proton-sensing G protein-coupled receptors in primary dorsal root ganglion culture)
相關論文
★ 週邊發炎反應增加酸敏感受體- TDAG8基因在背根神經節之表現量★ 酸敏感G蛋白偶合受體,G2A,在ASIC3基因剔除小鼠中改變表現量
★ MrgB4受體專一表現於感覺神經元,且在ASIC3基因剔除小鼠中有不同的表現。★ 血清素受體2B對酸敏感離子通道3與辣椒素受體1的影響
★ 酸敏感G蛋白偶合受體功能上的拮抗機制★ TDAG8活化後經由PKA與PKCε增強辣椒素受體的敏感度
★ 台灣海岸植物之內生真菌多樣性研究★ ASIC3、TRPV1或TDAG8基因缺失會減緩關節炎誘導的熱痛覺過敏並抑制衛星膠細胞表現
★ 抑制OGR1表現可減緩慢性神經性疼痛藉由減少顆粒性白血球數及非IB4神經元之鈣訊號★ 抑制OGR1及G2A表現可藉由調控非IB4神經元鈣訊號減緩酸所誘導長期疼痛
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Peripheral ASIC3 activation involves in the late phase of CCI-induced mechanical allodynia by switching CGRP-positive population from small to large diameter neurons
★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults★ G-蛋白偶合接受體與G-蛋白訊號調控蛋白之整合型資料庫
★ 血清素受體2B基因在酸敏感受體3基因剔除小鼠的背根神經節中表現量增加★ 酸敏感的G蛋白偶合受體─OGR1表現在背根神經節內與痛覺相關的感覺神經元上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在組織受傷,發炎反應,或神經受損時,通常會造成局部組織氫離子濃度的上升,稱為組織酸化.此現象通常伴隨著疼痛及疾病的產生.之前的研究也證實氫離子是造成疼痛的ㄧ個重要因子.酸敏感受體3 (ASIC3)及辣椒素受體 (VR1)是氢離子的受體.之前的研究結果指出,當這兩個受體缺失後,並不能完全去除酸所造成的疼痛.因此,有可能還有其他分子參予在其中.最近研究指出,卵巢癌G 蛋白偶合受體1 (OGR1),G蛋白耦合受體4 (GPR4),G2-累積受體 (G2A),及T-細胞死亡相關受體8(TDAG8),是ㄧ個酸敏感G蛋白耦合受體家族.實驗室之前的研究成果指出,卵巢癌G 蛋白偶合受體1家族均表現在神經性的組織,包括背根神經節,也就是感覺神經細胞本體的集結處.在這個基因家族中,以卵巢癌G 蛋白偶合受體1的基因表現量為最高.因此我的實驗目的想知道卵巢癌G 蛋白偶合受體1, G蛋白耦合受體4在背根神經節中的分布情形,以及卵巢癌G 蛋白偶合受體1家族在背根神經節神經細胞中的訊息傳遞路徑.實驗結果發現,卵巢癌G 蛋白偶合受體1和 G蛋白耦合受體4主要表現在不表現神經胜肽(IB4+)的痛覺神經元中,並和酸敏感受體3及辣椒素受體有共同表現的情形.另外,大約31%~40%的神經細胞會表現至少兩個卵巢癌G 蛋白偶合受體1家族成員.而在訊息路徑的實驗中,則沒有切確的結論.
摘要(英) Tissue injury, inflammation, or ischemia usually cause an increase in local proton concentration, which is called tissue acidosis. This phenomenon often companies with disease and painful sensation. The proton has been demonstrated as the main factor of acid-induced pain. Acid-sensing ion channel 3 (ASIC3), a member of ASICs family, and vanilloid receptor 1 (VR1) are the proton-sensing receptors. Deficiency of the two genes can not completely eliminate acid–induced pain. It is possible that other molecules involved in acid–induced pain. OGR1 family that belongs to G protein-coupled receptors including ovarian cancer G protein-coupled receptor 1 (OGR1), G protein-coupled receptor 4 (GPR4), G2A, and T cell death associated gene 8 (TDAG8), has been reported as the proton-sensing receptors. The previous study in our lab has found that OGR1 family members are expressed in neuronal tissues, including dorsal root ganglion (DRG). Among these, OGR1 has the highest gene expression levels. However, whether OGR1 and GPR4 are located in nociceptors and their function in DRG remain unclear. Therefore, the objective of the thesis is to determine localization of OGR1 and GPR4 and to study their signaling pathways in primary DRG culture. I have found that OGR1 and GPR4 were mainly expressed in non-peptidergic, small-diameter nociceptors. Approximately 31%~40% of total DRG neurons contain at least two receptors of OGR1 family. A subset of OGR1 family members were co-localized with ASIC3 or VR1. In primary culture experiments, no clear conclusion was found.
關鍵字(中) ★ 酸
★ 背根神經節
★ 神經元
關鍵字(英) ★ nociception
★ proton
★ DRG
論文目次 Contents
Abstract………………………………………………………………………………………I
Contents…………………………………………………………………………………….IX
Lists of figures…………………………………………………………………………..VIII
List of tables……………………………………………………………………………...XII
Chapter 1 Introduction…………………………………………………………………..1
1.1 Pain……………………………………………………………………………………2
1.2 Nociception…………………...……………………………………………………...2
1.3 Sensory neurons in darsal root ganglia………………………………………….3
1.3.1 Propiocrptors……………………………………………………………………...3
1.3.2 Nociceptors……………………………………………………………………….4
1.4 Nociceptive pathways……………………………………………………………...4
1.5 Tissue acidosis………………………………………………………………………6
1.6 Proton-sensing receptors…………………………………………………………..7
1.6.1 Vanilloid receptor 1 (VR1)………………………………………………………..7
1.6.2 Acid-sensing ion channels (ASICs)………………………………………………7
1.6.3 Proton-sensing G protein-coupled receptors……………………………………...8
1.6.4 The OGR1 family as the receptors of proton……………………………………..9
1.7 The objective of the thesis……………………………………………………….10
Chapter 2 Materials and methods……………………………………………………11
2.1 Tissue preparation……………...…………………………………………………..12
2.2 RNA extraction……………………………………………………………………..12
2.3 Polymerase chain reaction……………………………………………..................13
2.3.1 Design of primers………………………………………………………………..13
2.3.2 Synthesis of complementary DNA……………………………………………...14
2.3.3 Reverse transcription PCR (RT-PCR)…………………………………………...14
2.3.4 Quantitative PCR (Q-PCR)……………………………………………………...15
2.3.5 Preparation of agarose gel and electrophoresis………………………………….15
2.4 Amplification of plasmids………………………………………………………...16
2.5 Cloning of mASIC3 and mG2A………………………………………………....17
2.5.1 Preparation of vectors…………………………………………………………...17
2.5.2 Synthesis of inserts……………………………………………………………....18
2.5.3 Ligation………………………………………………………………………….19
2.5.4 PCR screening…………………………………………………………………...19
2.5.5 Sub-cloning of mASIC3…………………………………………………………20
2.6 In situ hybridization and immunohistochemistry experiments…………......20
2.6.1 Preparation of probes……………………………………………………………20
2.6.2 Slides coating……………………………………………………………………21
2.6.3 Preparation the tissue sections…………………………………………………..21
2.6.4 Hybridization……………………………………………………………………22
2.6.5 Immunohistochemistry………………………………………………………….23
2.7 Primary culture of dorsal root ganglion…………………………………………24
2.7.1 Treatment of cover slips by poly-D-lysine………………………………………24
2.7.2 Isolation of mouse dorsal root ganglion…………………………………………24
2.7.3 Primary culture of DRG neurons………………………………………………..24
2.8 Measurement the change of intracellular calcium concentration…………....25
2.8.1 Preparation of different values of pH buffers……………………………………25
2.8.2 Quantitation of intracellular calcium concentration……………………………..26
Chapter 3 Results………………………………………………………………………...28
3.1 Cloning of mASIC3 and mG2A genes……………………………………….....29
3.2 The change of gene expression levels of mOGR1 and mGPR4 in dorsal root ganglia are not notably between wild type and ASIC3 knockout mice
………………………………………………………………………………………...29
3.3 Mouse OGR1 and GPR4 genes are expressed predominantly in nociceptors………………………………………………………………………...30
3.3.1 Mouse OGR1 and GPR4 are expressed predominantly in small-diameter neurons
………………………………………………………………………………….31
3.3.2 Mouse OGR1 and GPR4 genes are expressed predominantly in IB4-positive neurons…………………………………………………………………………..31
3.3.3 Localization of mouse OGR1 and GPR4 genes with anti-VR1 antibodies in sensory neurons………………………………………………………………….32
3.4 OGR1 family shows high percentage of co-localization………………….....33
3.5 OGR1 family shows high degree of co-localization with ASIC3 in small-diameter neurons…………………………………………………………..34
3.6 The gene expression pattern of epithelial cell differentiation gene (EDG) family in mouse dorsal root ganglia....................................................................35
3.7 Dorsal root ganglia primary neurons can be activated by capsaicin………36
3.8 Dorsal root ganglia primary neurons can be activated by proton stimulation..................................................................................................................37
3.9 Intracellular calcium concentration can be elevated by proton stimulation in primary sensory neurons………………………………………………………38
3.10 Proton-sensing receptors are expressed in primary sensory neurons……39
Chapter 4 Discussion…………………………………………………………………….40
4.1 mOGR1 and mGPR4 are expressed predominatly in non-peptidergic nociceptors………………………………………………………………………….41
4.2 Co-localization of mOGR1 and mGPR4 with VR1………………………….41
4.3 Co-localization of proton-sensing GPCRs with ASIC3……………………..42
4.4 Proton-sensing GPCRs show high degree of co-localization in dorsal root ganglia………………………………………………………………………………...42
4.5 DRG primary neurons are activated by proton………………………………..43
References………………………………………………………………………………...103
Appendix………………………………………………………………………………….111
參考文獻 Alexander, Z., Lisam, S., Haiyan, T., Huawen, D., Zicai, L., and Yan, X., 2006. Homo- and hetero-dimerization of LPA/S1P receptors, OGR1 and GPR4. Biochemica et Biophysica Acta. 1761, 1200-1212.
Alvarez-de-la Rosa, D., Zhang, P., Shao, D., White, F. and Canessa, C.M., 2002. Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc. Natl. Acad. Sci. U. S. A. 99, 2326–2331.
Alvarez-de-la Rosa, D., Krueger, S.R., Kolar, A., Shao, D., Fitzsimonds, R.M. and Canessa, C.M., 2003. Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system. J. Physiol. 546, 77–87.
Akaike, N., Krishtal, O.A. and Maruyama, T., 1990. Proton-induced sodium current in frog isolated dorsal root ganglion cells. J. Neurophysiol. 63, 805-813.
An, S., Bleu, T., Huang, W., Hallmark, O.G., Coughlin, S.R. and Goetzl, E.J., 1997. Identification of cDNAs encoding two G protein-coupled receptors for lysosphingolipids. FEBS Lett. 417, 279– 282.
Ancellin, N. and Hla, T., 1999. Differential Pharmacological Properties and Signal Transduction of the Sphingosine 1-Phosphate Receptors EDG-1, EDG-3, and EDG-5. J. Biol. Chem. 274, 18997– 19002.
Amadesi. S., Nie. J., Vergnolle. N., Cottrell. S., Grady. F., Trevisani. M., Manni. C., Geppetti. P., McRoberts. A., Ennes. H., Davis. B., Mayer. A., and Bunnett. W., 2004. Protease-Activated Receptor 2 Sensitizes the Capsaicin Receptor Transient Receptor Potential Vanilloid Receptor 1 to Induce Hyperalgesia. J Neurosci. 24, 4300-4312.
Babinski, K., Catarsi, S., Biagini, G. and Seguela, P., 2000. Mammalian ASIC2a and ASIC3 subunits co-assemble into heteromeric proton-gated channels sensitive to Gd3+. J. Biol. Chem. 275, 28519-28525.
Berridge, M.J., 1998. Neuronal Calcium Signaling. Neuron 21, 13-26.
Bevan, S. and Yeast, J., 1991. Protons activate a cation conductance in a sub-population of rat dorsal root ganglion neurons. J. Physiol. 433, 145-161.
Black, A., Shujun, Liu., Masaki, T., Cummins, R., and Waxman, G., 2004. Changes in the expression of tetrodotoxin-sensitive sodium channels within dorsal root ganglia neurons in inflammatory pain. Pain. 108, 237-247
Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D. and Julius, D., 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824.
Caterina, M.J., Leffler, A., Malmberg, A.B., Martin, W.J., Trafton, J., Petersen-Zeitz, K.R., Koltzenburg, M., Basbaum, A.I. and Julius, D., 2000. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306-313.
Chen, C.C., England, S., Akopian, A.N. and WooD, J.N., 1998. A sensory neuron-specific, proton-gated ion channel. Proc. Natl. Acad. Sci. U. S. A. 95, 10240-10245.
Chen, C.C., Zimmer, A., Sun, W.H., Hall, J., Brownstein, M.J. and Zimmer, A., 82 2002. A role for ASIC3 in the modulation of high-intensity pain stimuli. Proc. Natl. Acad. Sci. U. S. A. 99, 8992-8997.
Choi, J.W., Lee, S.Y. and Choi, Y., 1996. Identification of a putative G protein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol. 168, 78-84.
Costigan, M. and Woolf, C.J., 2000. Pain: molecular mechanisms. J. Pain 1, 35-44. Croset, M., Brossard, N., Polette, A. and Lagarde, M., 2000. Characterization of plasma unsaturated lysophosphatidylcholines in human and rat. Biochem J. 345, 61-67.
Coutaux, A., Adam, F., Willer, J.C., Le Bars, D., 2005. Hyperalgesia and allodynia: peripheral mechanisms. Joint Bone Spine. 72, 359-371.
Davis, B.J., Gray, j., Gunthorpe, M.J., Hatcher, J.P., Davey, P.T., Overend, P., Harries, M.H., Latcham, J., Clapham, C., Atkinson, K., Hughes, S.A., Rance, K., Grau, E., Harper, A.J., Pugh, P.L., Rogers, D.C., Bingham, S., Randall, A., and Sheardown, S.A., 2000. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature. 405, 183-187.
Dray. A., 1995. Inflammatory mediators of pain. British Journal of Anaesthesia. 75, 125-131.
Molliver, C., Immke, C., Leonardo, F., Michael, P., Rice, L., and McCleskey, W., 2005. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Molecular Pain. 1:35.
Escoubas, P., Weille, J.R.D., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., Me´nez, A. and Lazdunski, M., 2000. Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels. J. Biol. Chem. 275, 25116–25121.
Gerke. B., and Plenderleith. B., 2001. Binding sites for the plant lectin Bandeiraea simplicifolia I-isolectin B4 are expressed by nociceptive primary sensory neurons. Brain Res. 911, 101-104.
Heringdorf, D.M.Z., Himmel, H.M. and Jakobs, K.H., 2002. Sphingosylphosphorylcholine- biological functions and mechanisms of action. Biochimica et Biophysica Acta 1582, 178-189.
Huang, C.W. 2005. The expression of proton-sensing G protein-coupled receptor, OGR1, in pain-related neurons. Master thesis of Life Sience, National Central University.
Hunt, S.P., and Mantyh, P.W., 2001. The molecular dynamics of pain control. Nature Rrev neurosci. 2, 83-91.
Julius, D. and Basbaum, A.I., 2001. Molecular mechanisms of nociception. Nature 413, 203-210.
Jordt, S.E., Tominaga, M., and Julius, D., 2000. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc Natl Acad Sci. 97, 8134-8139.
Kabarowski, J.H.S., Zhu, K., Le, L.Q., Witte, O.N. and Xu, Y., 2001.Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293, 702-705.
Kandel, E.R., Schwartz, J.H. and Jessell, T.M., Principles of neural science. 4th edition. Chapter 24. Konnerth, A., Lux, H.G. and Morad, M., 1987. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J of Physiol. 386, 606-33.83
Krishtal,O.A., and Pidoplichko, V.I., 1980. A receptor for protons in the nerve cell membrane. Neuroscience. 5, 2325-2327.
Konnerth, A., Lux, H.D., and Morad, M., 1987. Proton-induced transformation of calcium channel in chick dorsal root ganglion cells. J Physiol. 386, 603-633.
Liliom, K., Sun, G., BÜnemann, M., VirÁg, T., Nusser, N., Baker, D.L., Wang, D., Fabian, M.J.,
Brandts, B., Bender, K., Eickel, A., Malik, K.U., Miller, D.D., Desiderio, D.M., Tigyi, G. and Pott, L., 2001. Sphingosylphosphocholine is a naturally occurring lipid mediator in blood plasma: a possible role in regulating cardiac function via sphingolipid receptors. Bioche. J. 355, 189-197.
Lin, P. and Ye, R.D. 2003. The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J. Biol. Chem. 278, 14379-14386.
Ludwig, M., Vanek, M., Guerini, D., Gasser, J.A., Jones, C.E., Junker, U., Hofstetter, H., Wolf, R.M. and Seuwen, K., 2003. Proton-sensing G-protein-coupled receptors. Nature 425, 93-98.
Mahadevan, M.S., Baird, S., Bailly, J.E., Shutler, G.G., Sabourin, L.A., Tsilfidis, C.T., Neville, C.E., Narang, M. and Korneluk, R.G., 1995. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3. Genomics 30, 84-88.
Mantyh, P.W., and Hunt, S.P., 1998. Hot peppers and pain. Neuron. 21, 644-645.
Murakami, N., Yokomizo, T., Okuno, T. and Shimizu, T., 2004. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J. Biol. Chem. 279, 42484-42491.
Nicole, M., Annette, C., Laura, E., and Cheryl, L., 2005. Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain. 115, 37-49
Price, M.P., McIlwrath, S.L., Xie, J., Cheng, C., Qiao, J., Tarr, D.E., Sluka, K.A., Brennan, T.J., Lewin, G.R. and Welsh, M.J., 2001. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32, 1071-1083.
Radu, C.G.., Nijagal, A., McLaughlin, J., Wang, L. and Witte, O.N., 2005. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc. Natl. Acad. Sci. U. S. A. 102, 1632-1637.
Reeh, P.W. and Steen, K.H., 1996. Tissue acidosis in nociception and pain. Progress in Brain Research. 113, 143-51.
Renard, S., Lingueglia, E., Voilley, N., Lazdunski, M. and Barbry, P., 1994. Biochemical analysis of themembrane topology of the amiloride-sensitive Na+ channel. J. Biol. Chem. 269, 12981–12986.
Ryglewski, S., Pflueger, H., and Duch, C., 2007. Expanding the Neuron’s Calcium Signaling Repertoire : Intracellular Calcium Release via Voltage-Induced PLC and IP3R Activation. PLoS Biol. 5(4): e66.
Sahera, D., Pauers, E., and Stucky, L., 2003. Differential Response Properties of IB4-Positive and –Negative Unmyelinated Sensory Neurons to Protons and Capsaisin. J. Neurophysiol. 89, 513-524.
Scholz, J., and Woolf, J., 2002. Can we conquer pain? Nature Neuroscience. 5, 1062 – 1067.
Shinya, U., Takashi, U., Hisao, Y., and Shocichi, S., 2005. In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons. Molecular brain research. 136, 125-133.
Shishkin, V., Potapenko, E., Kostyuk, E., Girnyk, O., Voitenko, N., and Kostyuk, P., 2002. Role of mitochondria in intracellular calcium signaling in primary and secondary sensory neurons of rats. Cell Calcium 32(3), 121-130.
Sitaramayya, A., Introduction to Cellular Signal Transduction. Chapter 1. Sitaramayya, A., and Bunnett, N.B., 1999. Cell Surface Receptors: Mechanisms of Signaling and Inactivation.
Snider, D., and McMahon, B., 1998. Tackling Pain at the Source : New Ideas about Nociceptors. Neuron. 20, 629-632.
Steen, K.H., Reeh, P.W., Anton, F. and Handwereker, H.O., 1992. Protons selectively induce lasting excitation and sensitization to mechanical stimulation of nociceptors in rat skin, in vitro. J. Neuronscience 12, 86-93.
Steen, K.H. and Reeh, P.W., 1993. Sustained graded pain and hyperalgesia from harmless experimental tissue acidosis in human skin. Neuronsceince Letters 154, 113-116.
Steen, K.H., Steen, A. and Reeh, P.W., 1995. A dominant role of acid pH in inflammatory excitation and sensitization of nociceptors in rat skin, in vitro. J. neuroscience 15, 3982-3968.
Steen, K.H., Steen, A., Kreysel, H. and Reeh, P.W., 1996. Inflammatory mediators potentiate pain induced by experimental tissue acidosis. Pain 66, 163-170.
Stucky, C.L., and Lewin, G.R., 1999. Isolectin B4-positive and-negative nociceptors are functionally distinct. J. neuroscience. 19(15), 6497-6505.
Sutherland, S.P., Benson, C.J., Adelman, J.P., and McCleskey, E.W., 2001. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci. 98, 711-716.
Tominaga. M., Caterina. J., Malmberg. B., Rosen. A., Gilbert. H., Skinner. K., Raumann. E., Basbaum. I., and Julius. D., 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron. 21, 531-543.
Tomura, H., Mogi, C., Sato, K. and Okajima, F., 2005. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cellular Signalling 17, 1466-1476.
Tomura, H., Wang, J., Komachi, M., Damirin, A., Mogi, C., Tobo, M., Kon, J., Misawa, N., Sato, K. and Okajima, F., 2005. Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J. Biol. Chem. 280, 34458-34464.
Tosa, N., Murakami, M., Jia, W.Y., Yokoyama, M., Masunaga, T., Iwabuchi, C., Inobe, M., Iwabuchi, K., Miyazaki, T., Onoe, K.M., Iwata, K. and Uede, T., 2003. Critical function of T cell death-associated gene 8 in glucocorticoid-induced thymocyte apoptosis. Int. Immunol. 15, 741-749.
Van Brocklyn, J.R., Gra¨ler, M.H., Bernhardt, G., Hobson, J.P., Lipp, P. and Spiegel, S., 2000. Sphingosine-1-phosphate is a ligand for the G protein-coupled receptor EDG-6. Blood 95, 2624– 2629.
Waldmann, R., Champigny, G., Bassilana, F., Heurteaux, C. and Lazdunski, M., 1997. A proton-gated cation channel involved in acid-sensing. Nature 386, 173–177.
Waldmann, R., Bassilana, F., Weille, J., Champigny, G., Heurteaux, C. and Lazdunski, M., 1997. Molecular cloning of a non-inactivating proton-gated Na+ channel specific for sensory neurons. J. Biol. Chem. 272, 20975–20978.
Waldmann, R., and Lazdunski, M., 1998. H(+)-gated cation channels: neuronal acid sensors in the NaC/DEG family of ion channels. Curr Opin Neurobiol. 8, 418-424.
Wang, J., Kon, J., Mogi, C., Tobo, M., Damirin, A., Sato, K., Komachi, K., Malchinkhuu, E., Murata, N., Kimura, T., Kuwabara, A., Wakamatsu, K., Koizumi, H., Uede, T., Tsujimoto, G., Kurose, H., Sato, T., Harada, A., Misawa, N., Tomura, H. and Okajima, F., 2004. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J. Biol. Chem. 279, 45626-45633.
Wemmie, J.A., Chen, J., Askwith, C.C., Hruska-Hageman, A.M., Price, M.P., Nolan, B.C., Yoder, P.G., Lamani, E., Hoshi, T., Freeman, J. H. and Welsh, M.J., 2002. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34, 463–477.
Xu, Y., Fang, X.J., Casey, G. and Mills, G.B., 1995. Lysophospholipids activate ovarian and
breast cancer cells. Biochem. J. 309, 933–940.
Xu, Y., 2002. Sphingosylphosphorylcholine and lysophosphatidylcholine: G protein-coupled receptors and receptor-mediated signal transduction. Biochimica et Biophysica Acta 1582, 81-88.
Xu, Y. and Casey, G., 1996. Identification of human OGR1, a novel G protein-coupled receptor that maps to chromosome 14. Genomics 35, 397-402.
Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y. and Damron, D.S., 2000.
Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nature Cell Biology 2, 261-267.
Yamada, T., Okajima, F., Ohwada, S. and Kondo, Y., 1997. Growth inhibition of human pancreatic cancer cells by sphingosylphosphorylcholine and influence of culture conditions. Cell. Mol. Life Sci. 53, 435– 441.
Yang, D.M., and Kao, L.S. 2001. Relative contribution of he Na+ /Ca2+ exchanger, mitochondria and endoplasmic reticulum in the regulation of cytosolic Ca2+ and catecholamine secretion of bovine adrenal chromaffin cells. J Neurochemistry. 76, 210-216.
Zhu, K., Baudhuin, L.M., Hong, G., Williams, F.S., Cristina, K.L., Kabarowski, J.H.S., Witte, O.N. and Xu, Y., 2001. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J. Biol. Chem. 276, 41325-41335.
指導教授 孫維欣(Wei-Hsin Sun) 審核日期 2007-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明