博碩士論文 942204009 詳細資訊


姓名 古惠珍(Hui-chen Ku)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
(Roles of insulin receptor substrates in the action of green tea (-)-epigallocatechin gallate on insulin-stimulated growth of 3T3-L1 preadipocytes)
檔案 [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 肥胖是一種常見的疾病,與癌症,糖尿病,高血壓以及心血管疾病都有相關。造成肥胖的原因是脂肪細胞數目的增加,或脂肪細胞內三酸甘油酯的堆積。根據研究指出,內分泌與營養都會影響到肥胖的調節作用,其中胰島素在細胞分化時期會刺激細胞進行增生和adipogenesis,並促使細胞進行脂肪生成和抑制脂肪分解作用。然而綠茶唲茶素(亦稱維生素P),尤其是綠茶表沒食子酸酯型唲茶素酸酯(英文名稱和簡稱分別為 (-)-epigallocatechin gallate和EGCG),已被證實可以抑制脂肪細胞的增生與分化,並可促使前脂肪細胞和脂肪細胞的apoptosis,所以可作為預防肥胖的保健物質。因此,EGCG是否可調節胰島素刺激前脂肪細胞的增生仍然不清楚。在本論文中,使用3T3-L1前脂肪細胞株做為研究素材,我發現胰島素濃度100 nM,胰島素可分別增加胰島素接受器、IRS1、IRS2、IRS3、Raf1、MEK和 Erk蛋白的磷酸化,但減少IRS-4蛋白的磷酸化,然而前處理EGCG (20μM)於前脂肪細胞可以明顯抑制胰島素所促進訊息蛋白的磷酸化及胰島素接受器與IRS-1和IRS-2兩者之間的結合作用,並且可以明顯抑制胰島素所促進IRS 蛋白質和下游訊息蛋白質之間的結合作用。此外,前處理層粘連蛋白接受器的抗體(67-kDa laminin receptor;被認為是一種EGCG 接受器),可以中和EGCG抑制胰島素所促進訊息蛋白MEK和 IRS2的磷酸化。以上種種的跡象顯示,EGCG可透過阻礙胰島素的訊息傳導路徑而抑制前脂肪細胞的增生,並且EGCG 可透過層粘連蛋白接受器干擾胰島素的訊息傳導作用。此外,EGCG 比其他綠茶唲茶素干擾胰島素刺激增生更有效果。此篇研究結果可以說明在前脂肪細胞中,EGCG 調節胰島素訊息的作用機制。
摘要(英) Obesity is a common disease, and it was associated with risk of cancer, diabetes, hypertention, and cardiovascular disease. Development of obesity results from increases in the cell number and fat accumulation of adipocyts, and is regulated by endocrine and nutritional factors. Insulin regulates mitogenesis and adipogenesis of fat cells and stimulates lipogenesis and inhibits lipolysis. By contrast, green tea catechins (once called vitamin P), especially (-)-epigallocatechin gallate (EGCG), inhibits proliferation and differentiation of fat cells and induces the apoptosis of preadipocytes and adipocytes. EGCG has been proposed as a chemopreventative for obesity and diabetes. However, relatively little is known about the mechanism of the action of EGCG on insulin-stimulated fat cell function. This study was designed to investigate the pathways of EGCG’’s modulation of the insulin-stimulated mitogenesis of 3T3-L1 preadipocytes. EGCG decreased insulin-induced increases in levels of phospho-insulin receptor (pIR), phospho-insulin receptor substrates 1, 2, and 3 (pIRS1, 2, and 3), phospho-Raf1, phospho-MEK1/2, and phospho-Erk1/2 proteins and induced further insulin-decreased pIRS4 level. In addition, EGCG reduced the insulin-stimulated associations of IR with IRS1 and IRS2. EGCG also reduced the association of IRS proteins with downstream signaling proteins. Besides, pretreatment with 67-kDa laminin receptor could antagonize the effect of EGCG on insulin-induced pMEK1/2 and pIRS2. These data suggest that EGCG exerts its antimitogenic effects via inhibiting insulin signaling by the 67-kDa laminin receptor-dependent pathway. Moreover, EGCG was more effective than epicatechin, epicatechin gallate, and epigallocatechin in changing the insulin-stimulated mitogenic signals. Results of this study may relate to the mechanism by which EGCG modulates insulin-related preadipocytes.
關鍵字(中) ★ 胰島素
★ 綠茶唲茶素
關鍵字(英) ★ EGCG
★ insulin
論文目次 Abstract Ⅰ
中文摘要 Ⅱ
Acknowledgements Ⅲ
Contents Ⅳ
List of figures Ⅴ
Abbreviations Ⅵ
Introduction 1
Materials and Methods 4
Results 8
Discussions 12
References 14
Appendix 39
參考文獻 1. Zick Y. (2001) Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. TRENDS in Cell Biology 11: 437-441
2. Pirola L , Johnston A M, and Obberghen EV. (2004) Modulation of insulin action.
Diabetologia 47:170.184
3. Kahn BB, Flier JS. (2000) Obesity and insulin resistance. The Journal of Clinical Investigation 106: 473-481
4. Obberghen EV, Baron V, Delahaye L, Emanuelli B, Filippa N, Gioretti S, Lebrun P, Mothe P, Peraldi P, Rocchi S, Sawka D. Tartare S, and Giudicelli J (2001) Surfing the insulin signaling web. European Journal of Clinical Investigation 31: 966-977
5. LeRoith L, Zick Y. (2001) Recent advances in our understanding of insulin action and insulin resistance. Diabetes care 24: 588-597
6. Virkamaki A, Ueki K, Kahn CR. (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 103: 931–943
7. Thirone ACP, Huang C, Klip A (2006) Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. TRENDS in endocrinology ad metabolism 17: 70-76
8. Johnston AM, Pirola L, Obberghen EV. (2003) Molecular mechanisms of insulin receptor substrate protein-mediated modulation of insulin signaling. FEBS letters 546: 32-36
9. White MF (2002) IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283: 413-422
10. Tseng Y H, Ueki K, Kriauciunas K M, Kahn C R (2002) Differential roles of nsulin receptor substrates in the anti-apoptotic function of insulin-like growth factor-1 and insulin. The journal of biological chemistry 277: 31601-31611
11. Tamemoto H, Kadowaki T, Tobe K (1994) Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1 Nature 372: 182–186
12. Araki E., Lipes M A, Patti M E (1994) Alternative pathway of insulin signaling in mice with targeted disruption of IRS-1 gene. Nature 372: 186–190
13. Withers, D J, Gutierrez, J S, Towery H (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391: 900–904
14. Liu S, Wang Q, Lienhard G E, and Keller S R (1999) Insulin receptor substrate 3 is essential for growth or glucose homeostasis. J. Biol. Chem. 274: 18093–18099
15. Fantin V R, WangG E, Lienhard G E, and Keller S R (2000) Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction, and glucose homeostasis. Am. J. Physiol. 278: 127–133
16. Ahmad N and Mukhtar H. (1999)Green tea polyphenols and cancer: biologic mechanisms and practical implications. Nutr Rev 57: 78–83
17. Liao S, Kao YH, and Hiipakka RA. (2001) Green tea: biochemical and biological basis for health benefits. Vitam Horm 62: 1–94
18. Lin JK, Liang YC, and Lin-Shiau SY. (1999)Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem Pharmacol 58: 911–915
19. Mitscher LA, Jung M, Shankel D, Dou JH, Steele L, and Pillai SP.(1997) Chemoprotection: a review of the potential therapeutic antioxidant properties of green tea (Camellia sinensis) and certain of its constituents. Med Res Rev 17: 327–365
20. Yang CS and Wang ZY.(1993)Tea and cancer. J Natl Cancer Inst 85:1038–1049
21. Wolfram S, Wang Y and Thielecke F. (2006) Anti-obesity effect of green tea: From beside to bench. Mol. Nutr. Food Res 50: 176-187
22. Kao YH, Chang HH, Lee MJ, and Chen CL. (2006) Tea, obesity, and diabetes. Mol. Nutr. Food Res 50:188-210
23. Mendel S and Youdim MB. (2004) Catechin polyphenols: neurodegeneration and neuroprotection in neurodegenerative diseases. Free Radic Biol Med 37: 304–317
24. Haqqi TM, Anthony DD, Gupta S, Ahmad N, Lee MS, Kumar GK, and Mukhtar H. (1999)Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci USA 96: 4524–4529
25. Kao YH, Hiipakka RA, and Liao S. (2000) Modulation of endocrine systems and food intake by green tea epigallocatechin gallate. Endocrinology 141: 980–987
26. Kao YH, Hippakka RA, and Liao S. (2000) Modulation of obesity by a green tea catechin. Am J Clin Nutr 72: 1232–1241
27. Tachibana H, Koga K, Fujimura Y, and Yamada K.(2004) A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11: 380–381
28. Niimi T, Kumagai C, Okano M, and Kitagawa Y. (1997) Differentiation dependent expression of laminin-8 (alpha 4 beta 1 gamma 1) mRNAs in mouse 3T3-L1 adipocytes. Matrix Biol 16: 223–230
29. Bradford MM. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-254
30. Hung PF, Wu BT, Chen HC, Chen YH, Chen CL, Wu MH, Liu HC, Lee MJ, and Kao YH. (2005) Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. Am J Physiol Cell Physiol 288: C1094-1108
31. Tegos G, Stermitz FR, Lomovskaya O, and Lewis K. (2002) Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob Agents Chemother 46:3133-3141
32. Cao Y, Cao R. (1999) Angiogenesis inhibited by drinking tea. Nature 398:381
33. Nakayama M, Suzuki K, Toda M, Okubo S, and Hara Y. (1993) Inhibition of the infectivity of influenza virus by tea polyphenols. Antivir Res 21:289-299
34. Tang HR, Covington AD, and Hancock RA. (2003) Structure-activity relationships in the hydrophobic interation of polyphenals with cellulose and collagen. Biopolymer 70: 403-13
指導教授 高永旭(Yung-hsi Kao) 審核日期 2007-7-21

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡