博碩士論文 942204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.92.28.84
姓名 張儷瓊(Li-Chiung Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 FoxOs 大量表現對肌肉細胞末期分化的影響
(Effects of FoxOs over-expression on terminal myogenic differentiation)
相關論文
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現
★ Oc4和Nanog共同抑制末端肌肉分化★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色
★ PGC-1α 與 Stra13 間之交互作用★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制★ 探討小鼠骨骼肌中FoxO6的表現情形
★ 探討FoxO1在肌肉生成細胞中的表現位置變化及抑制肌肉細胞分化的機制★ 建立安全的誘導性幹細胞的重新編寫方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) FoxO家族含有4名成員(FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX, FoxO6),這些成員上均有一段consensus DNA 序列 TTGTTTAC,其功能相當於轉錄因子。FoxOs轉錄因子在調節細胞的分化、增殖、代謝及生存等相關功能上扮演重要的角色。近來研究發現FoxOs可經由PI3K的磷酸化來調控下游基因的表現,而影響肌肉的分化。一些研究指出FoxO3在骨骼肌當中表現會造成肌肉萎縮,但其他成員對肌肉造成相關性影響的功能及機制並未深入探討。為了觀察FoxOs在肌肉細胞生長及分化中所扮演的角色,因此在本研究中利用反轉錄病毒來穩定的大量表達FoxOs在肌肉纖維母細胞中。在大量表達FoxOs的肌肉細胞株中經誘導細胞分化後,觀察其型態上的差異,發現在大量表現FoxO1-AAA (FoxO1基因持續表現的突變體)、FoxO6的細胞株中,其分化的功能有被抑制的現象,其他細胞株與控制組對照之下並無明顯差異。進而抽取其不同時期 (細胞快速生長時期、細胞聚合時期、細胞分化時期) 的RNA並做RT-PCR來觀察各個FoxOs對肌肉分化相關性的特殊基因的影響。從實驗數據中發現在大量表現FoxO1-AAA的細胞株在經誘導分化之後,MRFs家族 (MyoD、MEF2C、Myf5及Myogenin) 的RNA表現量均有下降之情形,MRFs家族是調控肌肉特定基因轉錄的因子。因此可推測造成大量表現FoxO1-AAA細胞株不分化的原因可能是藉由調控MRFs基因來控制細胞生長及分化。要確定造成細胞不分化的相關機制是經由哪些訊息所影響的,因此我們在這些大量表現FoxOs而不分化的細胞株中,給予胰島素,Y27632及A23187處理,來觀察它們對於肌肉細胞末期分化所造成的影響,在實驗中發現當大量表現FoxO1-AAA時原本經誘導而不分化的型態下,在加入了胰島素時肌肉細胞反而走向分化。在實驗中觀察到葡萄糖濃度對肌肉細胞分化有差異性影響,因此我們想了解這些大量表現FoxOs並不分化的細胞株在處理胰島素之後對葡萄糖代謝是否會造成影響,所以利用glucose uptake來進行初步的實驗,並且利用流式細胞儀來觀察FoxOs在cell cycl中所造成的影響。
摘要(英) FoxO family contains four members (FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX, FoxO6) that function as transcriptional activators by binding as monomer to the consensus DNA sequence TTGTTTAC. FoxO transcription factors have been implicated in regulating diverse cellular functions including differentiation, metabolism, proliferation, and survival. Recent studies have revealed that PI3K can directly regulate gene expression through phosphorylation. Some studies have shown that FoxO3 can promote atrophy in skeletal muscle. However, their regulation and function in skeletal muscle have not been thoroughly understood. In this study, we have constructed stable clones of FoxO-overexpressed myoblasts by retrovirus transduction. FoxO1-AAA、FoxO6 over-expressed cells lose their ability to differentiate into myotubes, but not the other FoxOs over-expressed stable clones. The gene expression patterns of the later after differentiation were not significantly different from those of control cells. To identify how the differentiation of FoxO1-AAA overexpressed myoblasts were inhibited, we treated them with insulin, Y27632, and A23187, and then observed their influence on terminal myogenic differentiation. Our results revealed that treating the undifferentiated FoxO1-AAA over-expressed cells with insulin would provoke their differentiation. Moreover, we also found the maturity of myotube was changed when treated with different glucose concentrations. Finally we investigated whether well-differentiation of FoxO1-AAA over-expressed cells by insulin treatment was due to effects on glucose metabolism. We also examined the glucose uptake by 2-[1,2-3H(N)]-Deoxy-D-Glucose (2-DG) and the change of cell cycle by flow cytometry.
關鍵字(中) ★ 肌肉
★ 肌肉細胞分化
★ FoxO
關鍵字(英) ★ muscle
★ differentiation
★ FoxO
論文目次 誌謝 vii
中文摘要 iv
Abstract v
目錄 viii
表目錄 xii
縮寫與全名對照表 xiii
藥品及材料 xiii
基因 xiv
第一章、序論 1
1.1 肌肉發育的起源: 1
1.2 肌肉前驅細胞的演化過程 3
1.3 衛星細胞與肌肉的再生 4
1.4 MRF與肌肉細胞發育分化的關係 5
1.5 FOXOs的功能 7
1.6 研究動機與目的 10
第二章、實驗材料與方法 12
2.1 實驗材料 12
2.2 質體建構 13
2.2.1 質體建構之基本流程 13
2.2.2 pMSCV-neo-FOXOs 表現載體之構築 17
2.3 穩定細胞株的製備 18
2.3.1 細胞培養 18
2.3.2 轉染作用 (Transfaction) 18
2.3.3 篩選穩定細胞株 18
2.3.4 建立在 C2C12 所表現的穩定細胞株 18
2.4 RT-PCR 19
2.4.1 Total RNA 的抽取 19
2.4.2 反轉錄酶反應 (Reverse Transcriptase, RT) 19
2.4.3 聚合酶鏈反應 ( Polymerase Chain Reaction, PCR ) 20
2.4.4 PCR反應在肌肉特異性基因中的各個條件 20
2.5 西方墨點實驗 (Western blot) 21
2.5.1 總蛋白質的製備 21
2.5.2 SDS-polyacryamide Gel Electropheresis 22
2.5.3 轉印 (Transfer) 22
2.5.4 Blocking 以及 Antibody 辨識 22
2.5.5 抗體脫附 (Striping) 23
2.6 在不分化的穩定細胞株中處理藥劑的實驗 (insulin、Y27632及A23187 ) 24
2.6.1 細胞培養 24
2.6.2 藥劑處理 24
2.6.3 DAPI染色 24
2.6.4 將細胞株中的細胞核量化 24
2.6.5 RT-PCR 24
2.7 將不分化的細胞株培養在不同濃度的葡萄糖中並同時處理藥劑來觀察對分化的影響 25
2.7.1 細胞培養 25
2.7.2 DAPI染色 25
2.8 流式細胞儀分析 25
2.8.1 細胞培養 25
2.8.2 細胞前置處理 25
2.8.3 流式細胞儀數據分析 26
2.9 葡萄糖攝取實驗(Glucose uptake) 26
2.9.1 細胞培養 26
2.9.2 細胞CMB時期對葡萄糖攝取之處理 26
2.9.3 細胞MT時期對葡萄糖攝取之處理 27
第三章、結果 29
3.1 建立大量表達FoxOs的穩定細胞株 29
3.2 在肌纖維母細胞 (Sol8、C2C12) 中可穩定表達FoxOs的細胞株於分化時期的形態圖 29
3.3 在大量表達FoxOs細胞株中對於肌肉細胞分化的特異性相關基因表現的影響 30
3.3.1 大量表現FoxOs對Sol8的影響 31
3.3.2大量表現FoxOs對C2C12的影響 32
3.4在insulin、Y27632及A23187處理下對FoxOs不分化細胞株所造成的影響 34
3.4.1在C2C12-FoxO1-AAA中處理insulin、Y27632及A23187之後對於細胞分化影響之形態 34
3.4.2在不分化的細胞株 (C2C12-FoxO1-AAA) 中對於肌肉細胞分化的特異性相關基因表現的影響 35
3.5 C2C12-FoxO1-AAA在不同濃度的葡萄糖環境下處理insulin、Y27632及A23187對分化所造成的影響 36
3.6各個FoxOs穩定表達在Sol8中的細胞株對於細胞週期的影響 37
3.6.1 大量表現FoxOs的PMB時期對於細胞週期的影響 37
3.6.2 大量表現FoxOs的CMB時期對於細胞週期的影響 37
3.7利用insulin induction葡萄糖吸收來觀察不分化細胞對葡萄糖攝取量的影響 38
3.7.1 利用insulin induction葡萄糖吸收來觀察在C2C12表現FoxOs不分化細胞株對其攝取量的影響 39
3.7.2 利用insulin induction葡萄糖吸收來觀察在Sol8表現FoxOs不分化細胞株對葡萄糖攝取量的影響 40
第四章、討論 41
4.1大量表現FoxO1-AAA細胞株對於肌肉終極分化過程中特異基因的相關性影響 41
4.2 FoxOs細胞株在肌肉細胞中對於細胞週期的影響 41
4.3 FoxOs對於糖類代謝的可能影響 42
第五章、參考文獻 71
附錄一 76
I. 溶液及試劑配方 76
II. 藥品試劑 79
III. 酵素和限制酶 79
IV. 抗體 79
附錄二 80
I. Primer 對照表 80
II. 與肌肉分化相關基因的primer對照表 81
III. Plasmid 對照表 82
參考文獻 1. Ordahl CP, Le Douarin NM 1992 Two myogenic lineages within the developing somite. Development 114:339-353
2. Christ B, Ordahl CP 1995 Early stages of chick somite development. Anatomy and Embryology 191:381-396
3. Christ B, Schmidt C, Huang R, Wilting J, Brand-Saberi B 1997 Segmentation of the vertebrate body. Anatomy and Embryology 197:1-8
4. Christ B JH, Jacob M 1972 Experimentelle Untersuchungen zur Somitenentwicklung beim Hühnerembryo. Z Anat Entwicklungsgesch 138:82–97
5. Christ B, Jacob M, Jacob HJ 1983 On the origin and development of the ventrolateral abdominal muscles in the avian embryo. Anatomy and Embryology 166:87-101
6. Noden DM 1983 The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. American Journal of Anatomy 168:257-276
7. Christ B, Jacob HJ, Jacob M 1977 Experimental analysis of the origin of the wing musculature in avian embryos. Anatomy and Embryology 150:171-186
8. Buffinger N, Stockdale FE 1994 Myogenic specification in somites: induction by axial structures. Development 120:1443-1452
9. Williams BA, Ordahl CP 1994 Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120:785-796
10. Relaix F, Rocancourt D, Mansouri A, Buckingham M 2005 A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948-953
11. Tajbakhsh S 2003 Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Current Opinion in Genetics & Development 13:413-422
12. Yun K, Wold B 1996 Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Current Opinion in Cell Biology 8:877-889
13. Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y-i, Fujisawa-Sehara A 1995 A metalloprotease-disintegrin participating in myoblast fusion. Nature 377:652-656
14. Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA 1999 Reduced Differentiation Potential of Primary MyoD-/- Myogenic Cells Derived from Adult Skeletal Muscle. J Cell Biol 144:631-643
15. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M 2006 Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91-102
16. Mauro A 1961 Satellite cell of skeletall muscle fibers. The Journal of Biophysical and Biochemical Cytology 9:493-495
17. Hawke TJ, Garry DJ 2001 Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534-551
18. Charge SBP, Rudnicki MA 2004 Cellular and Molecular Regulation of Muscle Regeneration. Physiol Rev 84:209-238
19. McKinsey TA, Zhang CL, Olson EN 2001 Control of muscle development by dueling HATs and HDACs. Current Opinion in Genetics & Development 11:497-504
20. Michael A. Rudnicki RJ 1995 The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17:203-209
21. Edmondson DG, Olson EN 1993 Helix-loop-helix proteins as regulators of muscle-specific transcription. J Biol Chem 268:755-758
22. Norton JD 2000 ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113:3897-3905
23. Charles P. Ordahl BAW 1998 Knowing chops from chuck: roasting MyoD redundancy. BioEssays 20:357-362
24. Ludolph DC, Konieczny SF 1995 Transcription factor families: muscling in on the myogenic program. FASEB J 9:1595-1604
25. Olson EN 1992 Interplay between proliferation and differentiation within the myogenic lineage. Developmental Biology 154:261-272
26. Zhang P, Wong C, Liu D, Finegold M, Harper JW, Elledge SJ 1999 p21CIP1 and p57KIP2 control muscle differentiation at the myogenin step. Genes Dev 13:213-224
27. Malcolm R. Alison RP, Stuart Forbes, Nicholas A. Wright 2002 An introduction to stem cells. The Journal of Pathology 197:419-423
28. Sassoon DA 1993 Myogenic Regulatory Factors: Dissecting Their Role and Regulation during Vertebrate Embryogenesis. Developmental Biology 156:11-23
29. Kaestner KH, Knochel W, Martinez DE 2000 Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14:142-146
30. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, Emanuel BS, Rovera G, Barr FG 1993 Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230-235
31. Schmidt M, de Mattos S, van der Horst A, Medema R 2002 Cell Cycle Inhibition by FoxO Forkhead Transcription Factors Involves Downregulation of Cyclin D. Mol Cell Biol 22:7842–7852.
32. P Carlsson MM 2002 Forkhead Transcription Factors: Key Players in Development and Metabolism Developmental Biology 250:1-23(23)
33. Accili D, Arden KC 2004 FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation. Cell 117:421-426
34. Tran H, Brunet A, Griffith EC, Greenberg ME 2003 The Many Forks in FOXO's Road. Sci STKE 2003:re5-
35. Tsai W-C, Bhattacharyya N, Han L-Y, Hanover JA, Rechler MM 2003 Insulin Inhibition of Transcription Stimulated by the Forkhead Protein Foxo1 Is Not Solely due to Nuclear Exclusion. Endocrinology 144:5615-5622
36. Kajihara T, Jones M, Fusi L, Takano M, Feroze-Zaidi F, Pirianov G, Mehmet H, Ishihara O, Higham JM, Lam EWF, Brosens JJ 2006 Differential Expression of FOXO1 and FOXO3a Confers Resistance to Oxidative Cell Death upon Endometrial Decidualization. Mol Endocrinol 20:2444-2455
37. Rosas M, Dijkers PF, Lindemans CL, Lammers J-WJ, Koenderman L, Coffer PJ 2006 IL-5-mediated eosinophil survival requires inhibition of GSK-3 and correlates with {beta}-catenin relocalization. J Leukoc Biol 80:186-195
38. Katoh M KM 2004 Human FOX gene family. International journal of oncology 25:1495-1500
39. Paik J-H, Kollipara R, Chu G, Ji H, Xiao Y, Ding Z, Miao L, Tothova Z, Horner JW, Carrasco DR, Jiang S, Gilliland DG, Chin L, Wong WH, Castrillon DH, DePinho RA 2007 FoxOs Are Lineage-Restricted Redundant Tumor Suppressors and Regulate Endothelial Cell Homeostasis. Cell 128:309-323
40. Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O 2004 Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control. J Biol Chem 279:41114-41123
41. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL 2004 Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell 117:399-412
42. Furuyama T, Kitayama K, Yamashita H, Mori N 2003 Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 375:365–371
43. Nakae J, Kitamura T, Silver DL, Accili D 2001 The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 108:1359-1367
44. Odelberg SJ, Kollhoff A, Keating MT 2000 Dedifferentiation of Mammalian Myotubes Induced by msx1. Cell 103:1099-1109
45. Nishiyama T, Kii I, Kudo A 2004 Inactivation of Rho/ROCK Signaling Is Crucial for the Nuclear Accumulation of FKHR and Myoblast Fusion. J Biol Chem 279:47311-47319
46. Zierath JR HJ 2004 Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348
47. Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V 2003 Sir2 Regulates Skeletal Muscle Differentiation as a Potential Sensor of the Redox State. Molecular Cell 12:51-62
48. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB 1995 Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018-1021
49. Andres V, Walsh K 1996 Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporally separable events that precede cell fusion upon myogenesis. J Cell Biol 132:657-666
50. Guo K, Walsh K 1997 Inhibition of Myogenesis by Multiple Cyclin-Cdk Complexes. COORDINATE REGULATION OF MYOGENESIS AND CELL CYCLE ACTIVITY AT THE LEVEL OF E2F. J Biol Chem 272:791-797
51. Parker SB, Eichele, G., Zhang, P., Rawls, A.,Sands, A.T., Bradley, A., Olson, E.N., Harper, J.W.and Elledge, S.J 1995 "p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells". Science 267:1024~1027
52. Ravussin E, Smith SR 2002 Increased Fat Intake, Impaired Fat Oxidation, and Failure of Fat Cell Proliferation Result in Ectopic Fat Storage, Insulin Resistance, and Type 2 Diabetes Mellitus. Ann NY Acad Sci 967:363-378
53. Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D 2003 Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 162:535-541
54. Nakae J, Kitamura T, Kitamura Y, Biggs WH, Arden KC, Accili D 2003 The Forkhead Transcription Factor Foxo1 Regulates Adipocyte Differentiation. Developmental Cell 4:119-129
55. Kopelman PG 2000 Obesity as a medical problem. Nature 404:635-643
56. Greer EL, Brunet A 2005 FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410-7425
57. Feng Libing YL, Zhou Weiguo, Huang Li, Wan Min, Zhao Shouyuan and Changben Li 2001 SGK and 14-3-3 protein are involved in the serine/threonine phosphosylation mechanism for TPO/MPL signal transduction. Chinese Science Bulletin 46:1880-1884
指導教授 陳盛良(Chen shen-liang) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明