博碩士論文 942204018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.117.107.90
姓名 王怡婷(Yi-Ting Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 Glutathione為KB細胞株中對抗亞砷酸鈉毒性 之主要物質
(Glutathione is a major participant in the defense of KB cells against NaAsO2-elicited toxicity)
相關論文
★ 三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究★ Galectin-1 與 Thioredoxin peroxidase II 基因之選殖及表現
★ 亞砷酸鈉誘引分裂中期停滯細胞之蛋白質體研究★ Galectin-1蛋白與亞砷酸鈉毒性與結合作用之研究
★ 氧化壓迫與p53參與三氯乙烯及四氯乙烯誘導人類肺癌細胞凋亡之研究★ Thioredoxin Peroxidase II蛋白與亞砷酸鈉毒性與結合作用之研究
★ 環型類★ 亞砷酸鈉與Galectin-1蛋白交互作用之研究
★ PAG蛋白質對三氧化二砷誘發急性前骨髓性白血癌細胞毒性之角色研究★ Galectin-1蛋白對細胞生長於幾丁聚醣膜上的影響及調控機制之研究
★ 低劑量亞砷酸鈉誘引第一型血紅素氧化酶調控路徑之研究★ 砷化物抑制Galectin-1基因之表現及機制之研究
★ 砷化物誘導Thioredoxin Peroxidase II蛋白之表現及機制之研究★ Galectin-1蛋白促進老鼠軟骨細胞於幾丁聚醣修飾之聚乳酸-聚乙酸醇共聚物支架生長之研究
★ Galectin-1對亞砷酸鈉毒性影響之研究★ Galectin-1誘導前脂肪細胞分化機制之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來研究指出,砷化物的毒性作用機制之一為促使細胞內氧化壓
力(oxidative stress)的產生。本研究主要目的為探討三價無機砷
(NaAsO2, As(III))是否導致人類口腔癌細胞(KB cells)中超氧化物
(reactive oxygen species, ROS)含量上升以及其對於細胞內中各種抗氧
化物質之影響,並藉由專一性抑制劑與RNA 干擾技術分別抑制細胞
中抗氧化物質,以瞭解各種抗氧化物在砷化物毒性中所扮演的角色。
結果顯示,當細胞經不同濃度(0~40 ?M) 之As(III) 處理24 小時後,
細胞內的ROS 有隨著砷化物劑量增加而誘導生成之情形。進一步分
析細胞內抗氧化物質後發現超氧歧化酶(SOD)、榖胱甘肽過氧化酶
(GPX)之酵素活性與peroxiredoxins 的基因表現並無受到As(III) 之影
響。然而,榖胱甘肽轉移酶(GSTs)和觸酶(catalase)的酵素活性以及
GST?、perxiredoxin 6 的蛋白表現卻在高濃度As(III)處理下反而受到
抑制。僅有細胞內榖胱甘肽(GSH)之含量會被As(III) 所大量誘導生
成;進一步探討兩種GSH 生合成有關的蛋白glutathione reductase (GR)
以及?-glutamylcysteine synthase (?-GCS),亦發現其基因與活性表現
皆會受到As(III)所誘導。利用抑制劑BSO 抑制細胞內GSH 的合成,
使得細胞對砷化物之毒性更加敏感,且在低濃度砷化物處理之下,就
會導致細胞內ROS 的顯著累積。因此本實驗推論KB 細胞對抗As(III)
之毒性,主要藉著誘導GSH 合成酶活性增加,進而使細胞內GSH 大
量表現以維持細胞氧化還原當量的平衡,並減少ROS 之累積以達到
保護細胞之功用。
摘要(英) Arsenic is a common environmental toxicant and one of the plausible
mechanisms of arsenic toxicity is oxidative stress. Oxidative stress has
also been implicated as a possible etiologic factor for arsenic
carcinogenesis. The objective of this research is to study the effect of
sodium arsenite (NaAsO2, As(III)) on antioxidant defense activities in a
human carcinoma KB cell line. The results showed that the survival of
KB cells was decreased as the dose of As(III) increased. Moreover,
treatment of the cells with 0-40 ?M As(III) for 24 hours enhanced the
formation of cellular reactive oxygen species (ROS). However, these
treatments had no effect on the activities of superoxide dismutase (SOD)
and glutathione peroxidase (GPX) as well as on the mRNA expressions of
peroxiredoxins. Moreover, the activities of glutathione S-transferases
(GSTs), catalase and the protein levels of GST?, catalase and Prx6 were
down-regulated in As(III)-treated KB cells. In contrast, the level of
glutathione (GSH) represented the sole antioxidant that up-regulated in
KB cells by As(III) treatment. The results also showed that glutathione
reductase (GR) and ?-glutamylcysteine synthase (?-GCS) appeared to be
the major contributing factors to the higher level of GSH observed in
As(III)-treated cells. Depletion of GSH sensitized KB cells to As(III)
treatment and enhanced ROS formation in cells, while depletions of other
antioxidants had no significant effects on As(III)-induced cytotoxicity.
These results supported the hypothesis that GSH is a major participant in
the defense of KB cells against As(III)-elicited toxicity.
關鍵字(中) ★ 榖胱甘肽
★ 砷化物
★ 亞砷酸鈉
★ 抗氧化物
★ 氧化壓力
★ 酵素活性
關鍵字(英) ★ antioxidant
★ sodium arsenite
★ arsenic
★ glutathione
★ enzyme activity
★ reactive oxygen species
★ ROS
論文目次 Contents
中文摘要…………………………………………………………...….i
Abstract……...………………………………………………………..ii
Contents ………………………..………..………………….………...iii
Figure Contents ………….….……...……………………………....vi
Abbreviation ………….…….….…….……………………………...vii
Chapter 1. Introduction
1. Arsenic ………………………………………………………………..1
2. Arsenic-mediated ROS generation……………………………………2
3. Cellular antioxidants
3.1 Glutathione (GSH)…………………………………………………4
3.2 Glutathione-related enzymes……………………………………....4
3.3 Catalase…………………………………………………………….6
3.4 Superoxide dismutase (SOD)……………………………………...6
3.5 Peroxiredoxins (Prxs)……………………………………………...8
4. Specific aims………………………………………………………….9
Chapter 2. Materials and Methods
1. Cell culture…………………………………………………………..11
2. Arsenite (As(III)) treatment………………………………………….11
3. Cell viability assay…………………………………………………...11
4. Measurement of intracellular ROS…………………………………..12
5. Protein assay and quantification……………………………………..12
5.1 Cell extracts preparation………………………………………….12
5.2 Protein quantification…………………………………………….13
5.3 Sodium dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) Analysis…………………………………………...13
5.4 Western blot analysis…………………………………………….13
6. Enzyme activity assay
6.1 Superoxide dismutase (SOD) activity assay……………………..15
6.2 Catalase activity assay……………………………………………15
6.3 Glutathione peroxidase (GPX) activity assay…………………….15
6.4 Glutathione S-transferases (GSTs) activity assay……………...…15
6.5 Glutathione (GSH) level assay…………………………………...16
6.6 Glutathione reductase (GSHR) activity assay……………………17
7. RT-PCR analysis
7.1 Total RNA isolation………………………………………………17
7.2 Reverse transcription (RT)………………………………………..18
7.3 Polymerase chain reaction (PCR)………………………………...18
8. Construction of Prx6 RNAi expression vector
8.1 siRNA target sequences design…………………………………...19
8.2 Anneal oligos……………………………………………………..21
8.3 Kinasing…………………………………………………………..21
8.4 p3in1 vector digestion and extraction…………………………….21
8.5 Ligate oligos into p3in1 vector………………………………...…22
8.6 Transformation……………………………………………………22
8.7 Colony-PCR and purification of plasmid DNA………………….23
8.8 DNA sequencing………………………………………………….23
9. Transfection…………………………………………………………..23
Results…………………………………………………………………25
Discussion……………………………………………………………..32
Figures………………………………………………………………....37
References…………………………………………………………….51
Appendix………………………………………………………….…..62
參考文獻 Aebi, H. (1984). Catalase in vitro. Methods Enzymol 105, 121-126.
Ahsan, H., Chen, Y., Kibriya, M. G., Islam, M. N., Slavkovich, V. N., Graziano, J. H., and Santella, R. M. (2003). Susceptibility to arsenic-induced hyperkeratosis and oxidative stress genes myeloperoxidase and catalase. Cancer Lett 201, 57-65.
Aposhian, H. V. (1997). Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37, 397-419.
Arrick, B. A., Nathan, C. F., Griffith, O. W., and Cohn, Z. A. (1982). Glutathione depletion sensitizes tumor cells to oxidative cytolysis. J Biol Chem 257, 1231-1237.
Ballatori, N., Wang, W., and Lieberman, M. W. (1998). Accelerated methylmercury elimination in gamma-glutamyl transpeptidase- deficient mice. Am J Pathol 152, 1049-1055.
Barchowsky, A., Dudek, E. J., Treadwell, M. D., and Wetterhahn, K. E.
(1996). Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med 21, 783-790.
Barchowsky, A., Klei, L. R., Dudek, E. J., Swartz, H. M., and James, P. E. (1999). Stimulation of reactive oxygen, but not reactive nitrogen species, in vascular endothelial cells exposed to low levels of arsenite. Free Radic Biol Med 27, 1405-1412.
Bertolero, F., Pozzi, G., Sabbioni, E., and Saffiotti, U. (1987). Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8, 803-808.
Bhattacharya, A., and Bhattacharya, S. (2007). Induction of oxidative
stress by arsenic in Clarias batrachus: involvement of peroxisomes. Ecotoxicol Environ Saf 66, 178-187.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254.
Bryk, R., Griffin, P., and Nathan, C. (2000). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211-215.
Chae, H. Z., Kim, I. H., Kim, K., and Rhee, S. G. (1993). Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 268, 16815-16821.
Chae, H. Z., Robison, K., Poole, L. B., Church, G., Storz, G., and Rhee, S. G. (1994). Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 91, 7017-7021.
Challenger, F. (1945). Biological methylation. Chem Rev 36, 315-361
Chang, K. N., Lee, T. C., Tam, M. F., Chen, Y. C., Lee, L. W., Lee, S. Y., Lin, P. J., and Huang, R. N. (2003). Identification of galectin I and thioredoxin peroxidase II as two arsenic-binding proteins in Chinese hamster ovary cells. Biochem J 371, 495-503.
Chen, F., Zhang, Z., Bower, J., Lu, Y., Leonard, S. S., Ding, M., Castranova, V., Piwnica-Worms, H., and Shi, X. (2002). Arsenite-induced Cdc25C degradation is through the KEN-box and ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A 99, 1990-1995.
Chen, J. W., Dodia, C., Feinstein, S. I., Jain, M. K., and Fisher, A. B. (2000). 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem 275, 28421-28427.
Chen, Y. C., Lin-Shiau, S. Y., and Lin, J. K. (1998). Involvement of reactive oxygen species and caspase 3 activation in arsenite-induced apoptosis. J Cell Physiol 177, 324-333.
Chouchane, S., and Snow, E. T. (2001). In vitro effect of arsenical compounds on glutathione-related enzymes. Chem Res Toxicol 14, 517-522.
Cohn, V. H., and Lyle, J. (1966). A fluorometric assay for glutathione. Anal Biochem 14, 434-440.
Cullen, W. R., and Reimer, K. J. (1989). Arsenic speciation in the environment. Chem Rev 89, 713-764.
Delnomdedieu, M., Basti, M. M., Otvos, J. D., and Thomas, D. J. (1994). Reduction and binding of arsenate and dimethylarsinate by glutathione: a magnetic resonance study. Chem Biol Interact 90, 139-155.
Eblin, K. E., Bowen, M. E., Cromey, D. W., Bredfeldt, T. G., Mash, E. A., Lau, S. S., and Gandolfi, A. J. (2006). Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217, 7-14.
Fischer, A. B., Buchet, J. P., and Lauwerys, R. R. (1985). Arsenic uptake, cytotoxicity and detoxification studied in mammalian cells in culture. Arch Toxicol 57, 168-172.
Flohe, L., and Gunzler, W. A. (1984). Assays of glutathione peroxidase. Methods Enzymol 105, 114-121.
Gailer, J., and Lindner, W. (1998). On-column formation of arsenic-glutathione species detected by size-exclusion chromatography in conjunction with arsenic-specific detectors. J Chromatogr B Biomed Sci Appl 716, 83-93.
Gallagher, B. M., and Phelan, S. A. (2007). Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radic Biol Med 42, 1270-1277.
Gurr, J. R., Liu, F., Lynn, S., and Jan, K. Y. (1998). Calcium-dependent nitric oxide production is involved in arsenite-induced micronuclei. Mutat Res 416, 137-148.
Habib, G. M., Shi, Z. Z., and Lieberman, M. W. (2007). Glutathione protects cells against arsenite-induced toxicity. Free Radic Biol Med 42, 191-201.
Habig, W. H., Pabst, M. J., and Jakoby, W. B. (1974). Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249, 7130-7139.
Hayakawa, T., Kobayashi, Y., Cui, X., and Hirano, S. (2005). A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79, 183-191.
Hofmann, B., Hecht, H. J., and Flohe, L. (2002). Peroxiredoxins. Biol Chem 383, 347-364.
Huang, R. N., and Lee, T. C. (1996). Arsenite efflux is inhibited by verapamil, cyclosporin A, and GSH-depleting agents in arsenite-resistant Chinese hamster ovary cells. Toxicol Appl Pharmacol 141, 17-22.
Ishii, T., Yamada, M., Sato, H., Matsue, M., Taketani, S., Nakayama, K., Sugita, Y., and Bannai, S. (1993). Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J Biol Chem 268, 18633-18636.
Iwahara, S., Satoh, H., Song, D. X., Webb, J., Burlingame, A. L., Nagae, Y., and Muller-Eberhard, U. (1995). Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry 34, 13398-13406.
Jing, Y., Dai, J., Chalmers-Redman, R. M., Tatton, W. G., and Waxman, S. (1999). Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94, 2102-2111.
Kang, S. W., Baines, I. C., and Rhee, S. G. (1998). Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J Biol Chem 273, 6303-6311.
Kitchin, K. T., and Ahmad, S. (2003). Oxidative stress as a possible mode of action for arsenic carcinogenesis. Toxicol Lett 137, 3-13.
Lee, T. C., and Ho, I. C. (1995). Modulation of cellular antioxidant defense activities by sodium arsenite in human fibroblasts. Arch Toxicol 69, 498-504.
Li, B., Ishii, T., Tan, C. P., Soh, J. W., and Goff, S. P. (2002). Pathways of induction of peroxiredoxin I expression in osteoblasts: roles of p38 mitogen-activated protein kinase and protein kinase C. J Biol Chem 277, 12418-12422.
Lieberman, M. W., Barrios, R., Carter, B. Z., Habib, G. M., Lebovitz, R. M., Rajagopalan, S., Sepulveda, A. R., Shi, Z. Z., and Wan, D. F. (1995). gamma-Glutamyl transpeptidase. What does the organization and expression of a multipromoter gene tell us about its functions? Am J Pathol 147, 1175-1185.
Liu, F., and Jan, K. Y. (2000). DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic Biol Med 28, 55-63.
Lo, J. F., Wang, H. F., Tam, M. F., and Lee, T. C. (1992). Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem J 288 ( Pt 3), 977-982.
Lynn, S., Gurr, J. R., Lai, H. T., and Jan, K. Y. (2000). NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 86, 514-519.
Maeda, S. (1994). Arsenic in Environment. , In Cycling and Characterization, J. Wiley, and S. Inc., eds., pp. 155-187.
Manevich, Y., Feinstein, S. I., and Fisher, A. B. (2004). Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc Natl Acad Sci U S A 101, 3780-3785.
Manevich, Y., Sweitzer, T., Pak, J. H., Feinstein, S. I., Muzykantov, V., and Fisher, A. B. (2002). 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc Natl Acad Sci U S A 99, 11599-11604.
Matsumoto, A., Okado, A., Fujii, T., Fujii, J., Egashira, M., Niikawa, N., and Taniguchi, N. (1999). Cloning of the peroxiredoxin gene family in rats and characterization of the fourth member. FEBS Lett 443, 246-250.
McCord, J. M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244, 6049-6055.
Meister, A. (1994). Glutathione, ascorbate, and cellular protection. Cancer Res 54, 1969s-1975s.
Meister, A., and Anderson, M. E. (1983). Glutathione. Annu Rev Biochem 52, 711-760.
Mylona, P. V., Polidoros, A. N., and Scandalios, J. G. (1998). Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25, 576-585.
Nordenson, I., and Beckman, L. (1991). Is the genotoxic effect of arsenic mediated by oxygen free radicals? Hum Hered 41, 71-73.
Ochi, T. (1988). Effects of glutathione depletion and induction of metallothioneins on the cytotoxicity of an organic hydroperoxide in cultured mammalian cells. Toxicology 50, 257-268.
Ochi, T. (1997). Arsenic compound-induced increases in glutathione levels in cultured Chinese hamster V79 cells and mechanisms associated with changes in gamma-glutamylcysteine synthetase activity, cystine uptake and utilization of cysteine. Arch Toxicol 71, 730-740.
Peshenko, I. V., and Shichi, H. (2001). Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic Biol Med 31, 292-303.
Ploemen, J. H., van Ommen, B., and van Bladeren, P. J. (1990). Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 40, 1631-1635.
Powis, G., Briehl, M., and Oblong, J. (1995). Redox signalling and the control of cell growth and death. Pharmacol Ther 68, 149-173.
Rhee, S. G., Kang, S. W., Chang, T. S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35-41.
Schuliga, M., Chouchane, S., and Snow, E. T. (2002). Upregulation of glutathione-related genes and enzyme activities in cultured human cells by sublethal concentrations of inorganic arsenic. Toxicol Sci 70, 183-192.
Scott, N., Hatlelid, K. M., MacKenzie, N. E., and Carter, D. E. (1993). Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6, 102-106.
Shi, H., Shi, X., and Liu, K. J. (2004). Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255, 67-78.
Singhal, R. K., Anderson, M. E., and Meister, A. (1987). Glutathione, a first line of defense against cadmium toxicity. Faseb J 1, 220-223.
Styblo, M., Del Razo, L. M., Vega, L., Germolec, D. R., LeCluyse, E. L., Hamilton, G. A., Reed, W., Wang, C., Cullen, W. R., and Thomas, D. J. (2000). Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74, 289-299.
Styblo, M., Delnomdedieu, M., and Thomas, D. J. (1996). Mono- and dimethylation of arsenic in rat liver cytosol in vitro. Chem Biol Interact 99, 147-164.
Styblo, M., Serves, S. V., Cullen, W. R., and Thomas, D. J. (1997). Comparative inhibition of yeast glutathione reductase by arsenicals and arsenothiols. Chem Res Toxicol 10, 27-33.
Styblo, M., and Thomas, D. J. (1995). In vitro inhibition of glutathione reductase by arsenotriglutathione. Biochem Pharmacol 49, 971-977.
Sun, X., Li, B., Li, X., Wang, Y., Xu, Y., Jin, Y., Piao, F., and Sun, G. (2006). Effects of sodium arsenite on catalase activity, gene and protein expression in HaCaT cells. Toxicol In Vitro 20, 1139-1144.
Tsou, T.-C., Yeh, S.-C., Tsai, F.-Y., and Chang, L. W. (2004a). The protective role of intracellular GSH status in the Arsenite- Induced Vascular Endothelial Dysfunction. Chem Res Toxicol 17, 208-217.
Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., and Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol Appl Pharmacol 208, 277-284.
Tsou, T. C., Yeh, S. C., Tsai, F. Y., and Chang, L. W. (2004b). The protective role of intracellular GSH status in the arsenite-induced vascular endothelial dysfunction. Chem Res Toxicol 17, 208-217.
Tsuji, K., Copeland, N. G., Jenkins, N. A., and Obinata, M. (1995). Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. Biochem J 307 ( Pt 2), 377-381.
Wang, C. L. (2002) PGA蛋白質對三氧化二砷誘發急性前骨髓性白血癌細胞毒性之角色研究, 國立中央大學碩士論文
Wang, H. F., and Lee, T. C. (1993). Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem Biophys Res Commun 192, 1093-1099.
Wang, T. S., Kuo, C. F., Jan, K. Y., and Huang, H. (1996). Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J Cell Physiol 169, 256-268.
Wang, T. S., Shu, Y. F., Liu, Y. C., Jan, K. Y., and Huang, H. (1997). Glutathione peroxidase and catalase modulate the genotoxicity of arsenite. Toxicology 121, 229-237.
Wang, Y., Feinstein, S. I., Manevich, Y., Ho, Y. S., and Fisher, A. B. (2004). Lung injury and mortality with hyperoxia are increased in peroxiredoxin 6 gene-targeted mice. Free Radic Biol Med 37, 1736-1743.
Wendel (1980). Glutathione Peroxidase, In Enztmatic basis of detoxication (San Diego: Academic Press), pp. 333-353.
Wood, Z. A., Schroder, E., Robin Harris, J., and Poole, L. B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28, 32-40.
Yamanaka, K., Hasegawa, A., Sawamura, R., and Okada, S. (1991). Cellular response to oxidative damage in lung induced by the administration of dimethylarsinic acid, a major metabolite of inorganic arsenics, in mice. Toxicol Appl Pharmacol 108, 205-213.
Yamanaka, K., Hayashi, H., Tachikawa, M., Kato, K., Hasegawa, A., Oku, N., and Okada, S. (1997). Metabolic methylation is a possible genotoxicity-enhancing process of inorganic arsenics. Mutat Res 394, 95-101.
Yamanaka, K., Kato, K., Mizoi, M., An, Y., Takabayashi, F., Nakano, M., Hoshino, M., and Okada, S. (2004). The role of active arsenic species produced by metabolic reduction of dimethylarsinic acid in genotoxicity and tumorigenesis. Toxicol Appl Pharmacol 198, 385-393.
Yamanaka, K., Mizol, M., Kato, K., Hasegawa, A., Nakano, M., and Okada, S. (2001). Oral administration of dimethylarsinic acid, a main metabolite of inorganic arsenic, in mice promotes skin tumorigenesis initiated by dimethylbenz(a)anthracene with or without ultraviolet B as a promoter. Biol Pharm Bull 24, 510-514.
Zaman, K., MacGill, R. S., Johnson, J. E., Ahmad, S., and Pardini, R. S. (1995). An insect model for assessing oxidative stress related to arsenic toxicity. Arch Insect Biochem Physiol 29, 199-209.
指導教授 黃榮南(Rong-Nan Huang) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明