博碩士論文 942204019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.20.238.187
姓名 王姿婷(Chin-Ting Wang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響
(Effects of green tea catechins on reactive oxygen species and glutathione in 3T3-L1 preadipocytes)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色★ 賜諾殺穩定性及東方果實蠅費洛蒙之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當活性氧 (ROS) 的生成和抗氧化防禦系統之間失去了平衡時,過多的活性氧會使細胞產生氧化壓力。有趣的是,多數多酚類植物同時擁有antioxidant以及prooxidant兩種特性。過去的研究指出綠茶茶多酚,例如EGCG,在細胞培養狀態下有能力使過氧化氫這種氧化物產生而改變自由基在細胞內的生成情況。然而,在3T3-L1前脂肪細胞裡,EGCG和氧化壓力之間的分子作用機制仍然不清楚。本研究是使用小白鼠3T3-L1 preadipocytes作為研究細胞株模型。我們發現,當3T3-L1 preadipocytes暴露於高濃度的EGCG,ROS的形成會隨著時間而增加。這結果顯示高劑量的EGCG在3T3-L1 preadipocytes擁有prooxidant的特性。細胞內的穀胱甘肽 (GSH) 被認為是可以用來評估細胞內氧化還原的狀態的一個重要參數。我們也發現EGCG可能減少細胞內穀胱甘肽,而減少的情況是跟時間及劑量有相關性的。為了研究GSH和ROS之間的關聯性,將3T3-L1 preadipocytes暴露在半胱胺酸 (NAC,GSH前驅物),發現EGCG導致的氧化作用會緩化下來。另外,將3T3-L1 preadipocytes暴露在L-buthionine sulfoximine (BSO,γ-glutamylcysteine合成酶抑制劑),發現EGCG導致的氧化壓力被強化。除此之外,進一步對綠茶中結構相似的唲茶素 (例如EC,ECG,EGC和EGCG) 作研究,發現其中仍以EGCG具有較明顯引起活性氧生成的能力,顯示綠茶具有特異性的作用效果。這些結果發現EGCG藉由改變細胞內穀胱甘肽的量來引起活性氧的生成。EGCG造成活性氧的生成及穀胱甘肽量的減少的現象同樣可以在3T3-L1 adipocytes中觀察的到。雖然證明了EGCG會造成活性氧的生成及穀胱甘肽量的減少,然而這種現象會被EGCG接受器(即67-kDa的laminin接受器)的抗體給限制住。這樣的結果顯示EGCG對活性氧和穀胱甘肽的影響是可經由67-kDa laminin接受器的這條途徑。
摘要(英) Oxidative stress represents an imbalance between production of reactive oxygen species (ROS) and the antioxidant defense system. Interestingly, most plant polyphenols were found to possess the antioxidant and prooxidant properties. It is evident that green tea polyphenols, such as EGCG, have the ability to produce H2O2 and alter the free radical generation in the cell culture system. However, the molecular effects and mechanisms underlying EGCG and oxidative stress in the 3T3-L1 preadipocytes are still not clear. The present study was to use murine 3T3-L1 preadipocytes as the research cell model to examine whether EGCG regulates production of ROS and glutathione (GSH) of fat cells. We found that when 3T3-L1 preadipocytes were exposed to high concentrations (50~100 μM) of EGCG, but not to low doses (5~20 μM) of EGCG, in short-term period (8hrs), their ROS production increased with a time-dependent manner. This suggests that high dose of EGCG possesses prooxidant capacity in 3T3-L1 preadipocytes. Also, EGCG could reduce the amount of intracellular GSH in dose- and time- dependent manners. To further examine the relation of GSH to ROS altered by EGCG, exposure of 3T3-L1 preadipocytes to N-acetyl-L-cysteine (NAC, a GSH precursor) blocked the EGCG-induced increases in ROS level and decreases in GSH levels. Moreover, treatment with L-buthionine sulfoximine (BSO, a γ-glutamylcysteine synthetase inhibitor) enhanced the EGCG-induced increases in ROS level and decreases in GSH levels. EGCG was more effective than other structure-related EC, ECG and EGC in changing ROS and GSH levels, suggesting the catechin-specific effect of green tea. These observations suggest the GSH-dependent effect of EGCG on ROS production. Similar changes in the EGCG-induced increases in ROS levels and decreases in GSH levels were observed in 3T3-L1 adipocytes. While EGCG was demonstrated to alter levels of ROS and GSH, signaling was blocked by an EGCG receptor, 67-kDa laminin receptor (67LR) antibody. These results suggest that EGCG exerts its effects on GSH and ROS levels via the 67LR pathway.
關鍵字(中) ★ 唲茶素
★ 活性氧
★ 氧化壓力
★ 榖胱甘肽
關鍵字(英) ★ 1-Methyl-3-isobutylxanthine
★ N-acetyl-L-cysteine.Phosphate buffered saline
★ Reactive oxygen species
★ L-buthionine sulfoximine
★ Bovine serum albumin
★ Epigallocatechin
★ Epigallocatechin gallate
★ Fetal bovine serum
★ Glutathione
★ Insulin
★ Dexamethasone
★ Epicatechin
★ Epi
論文目次 中文摘要 Ⅰ
Abstract Ⅱ
致謝 Ⅲ
Contents Ⅳ
List of figures Ⅴ
Abbreviations Ⅵ
Introduction 1
Materials and Methods 3
Results 7
Discussion 12
References 15
Appendix 31
參考文獻 1. Imtiaz, A. S., Vaqar, M. A., Mohammad, S., Hasan, M., Mol. Nutr. Food Res. 2006, 50, 130 – 143.
2. Mary, E. W. L., Xiaohui, L. W., Brian, K. L., Robert, K. H. et al., J. Biol. Chem. 2002, 277, 4933-34940.
3. Kao, Y. H., Hiipakka, R. A., Liao, S., Endocrinology 2000, 141, 980-987.
4. Kao, Y. H., Hiipakka, R. A., Liao, S., Am. J. Clin. Nutr. 2000, 72, 1232-1241.
5. Safe, S., Vitam. Horm. 2001, 62, 231-52.
6. Song, E. K., Hur, H., Han, M. K., Arch. Pharm. Res. 2003, 26, 559-563.
7. Hung, P. F., Wu, B. T., Chen, H. C., Chen, Y. H. et al., Am. J. Physiol. Cell Physiol. 2005, 288, C1094-C1108.
8. Wu, B. T., Hung, P. F., Chen, H. C., Huang, R. N., J. Agric. Food Chem. 2005, 53, 5695-5701.
9. Rice-Evans, C., Proc. Soc. Exp. Biol. Med. 1999, 220, 262-266.
10. Groot, H., Rauen, T., Fundam. Clin. Pharmacol. 1998, 12, 249-55.
11. Johnson, M. K., Loo, G., Mutat. Res. 2000, 459, 211–218.
12. Long, L. H., Clement, M. V., Halliwell, B., Biochem. Biophys. Res. Commun., 2000, 273, 50–53.
13. Sakagami, H., Arakawa, H., Maeda, M., Satoh, K. et al., Anticancer Res. 2001, 21, 2633-41.
14. Yamamoto, T., Hsu, S., Lewis, J., Wataha, J. et al., J. Pharmacol. Exp. Ther. 2003, 307, 230-236.
15. Yang, G. Y., Liao, J., Li, C., Chung, J. et al., Carcinogenesis 2000, 21, 2039-2045.
16. Chou, F. P., Chu, Y. C., Hsu, J. D., Chiang, H. C. et al., Biochem. Pharmacol. 2000, 60, 643-650.
17. Murakami, C., Hirakawa, Y., Inui, H., Nakano, Y. et al., J. Nutr. Sci. Vitaminol. 2002, 48, 89-94.
18. Raza, H., John, A., Toxicol. Appl. Pharmacol. 2005, 207, 212-220.
19. Tachibana, H., Koga, K., Fujimura, Y., Yamada, K., Nature Struct. Mol. Biol. 2004, 11, 380-381.
20. Kao, Y. H., Chang, H. H., Lee, M. J., Chen, C.L., Mol. Nutr. Food Res. 2006, 50, 188 – 210.
21. Ross D. Pharmacol. Ther. 1988, 37, 231-249.
22. Shan, X. Q., Aw, T. Y., Jones, D. P. Pharmacol. Ther. 1990, 47, 61-71.
23. Lin, Y., Berg, A. H., Iyengar, P., Lam, T. K. et al., J. Biol. Chem. 2005, 280, 4617-4626.
24. Bradford, M. M. Anal. Biochem. 1976, 72, 248-254.
25. Sanchez, F. A., Santema, J. S., Hilhorst, R., Visser, A. J., Anal. Biochem. 1990, 187, 129-132.
26. Lindheim, S. R., Duffy, D. M., Kojima, T., Vijod, M. A. et al., Fertil Steril. 1994, 62, 1176-1180.
27. Cohn, V. H., Lyle, J., Anal. Biochem. 1966, 14, 434-440.
28. Aebi H. (1984) Catalase in vitro. Methods Enzymol 105, 121–126.
29. Yamamoto, T., Niki, R., 1997, CRC. Press, Boca Raton, Flrida.
30. Yang, G. Y., Liao, J., Li, C., Chung, J. et al., Carcinogenesis. 2000, 21, 2035-2039.
31. Hong, J., Lu, H., Meng, X., Ryu, J. H. et al., Cancer Res. 2002, 62, 7241-7246.
32. Sugisawa, A., Umegaki, K., J. Nutr. 2002, 132, 1836-1839.
33. William, A. P., Kendall, N. H., Christopher, S. F., Jon, M. F. et al., Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 20, 1-122.
34. Russel, J. R., Dario, A. C., Dun-Xian, T., Susanne B., Ann. N. Y. Acad. Sci. 2001, 939, 200-215.
35. Liao, S., Kao, Y. H., Hiipakka, R. A. Vitam. Horm. 2001, 62, 1-94.
36. Yang, C. S., Wang, Z. Y., J. Natl. Cancer Inst. 1993, 85, 1038-1049.
37. Ahmad, N., Mukhtar, H., Nutr. Rev. 1999, 57, 78-83.
38. Zwirska-Korczala, K., Jochem, J., Adamczyk-Sowa, M., Sowa, P. et al., J. Physiol. Pharmacol. 2005, 56, 91-99.
39. Furukawa, S., Fujita, T., Shimabukuro, M., Iwaki, M., et al., J Clin Invest. 2004, 114, 1752-1761.
40. Moini, H., Tirosh, O., Park, Y. C., Cho, K.J. et al., Arch. Biochem. Biophys. 2002, 397, 384-391.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明