博碩士論文 942206030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:35.171.45.182
姓名 余兆陞(Zhao-Sheng Yu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製程研究
(Fabrication of second-harmonic-generation waveguide in MgO:PPLN for blue laser generation)
相關論文
★ Continuous-wave narrow-line yellow laser generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings★ 半導體雷射泵浦內建式Q-調制Nd:MgO:PPLN雷射之研究
★ 主動式多通道窄頻寬通Ti:PPLN波導濾波及模態轉換器之研究★ 非週期性晶格極化反轉鈮酸鋰作為主動式窄頻寬通多波長濾波器及倍頻多波長濾波器
★ 非週期性晶格極化反轉鈮酸鋰作為有效率的二倍頻和模態轉換器之研究★ 積體式週期與非週期極性反轉鈮酸鋰光電與雷射元件
★ 退火式質子交換波導PPLN電光調制TM模態轉輻射偏振態之研究★ 高效率雙Nd:YVO4 雷射和頻黃光產生系統
★ 以串級式電光週期性晶格極化反轉鈮酸鋰達成三波長主動式Q-調制Nd:YVO4雷射★ 以單塊二維週期性晶格極化反轉鈮酸鋰同時作為Nd:YVO4雷射之電光Q調制器和腔內光參量振盪器
★ 綠光準相位匹配二倍頻質子交換鎂摻雜鈮酸鋰波導的製程研究★ 以單晶片串級式週期性準相位匹配波長轉換器與非週期性準相位匹配電光偏振模態轉換器達成主動式調制窄頻輸出光參量振盪器之研究
★ 單片非週期性晶疇極化反轉鈮酸鋰同時作為Nd:YVO4雷射Q-調制和腔內光參量產生之研究★ 準相位匹配二倍頻軟質子交換鎂摻雜鈮酸鋰波導研究
★ 以雙體積全像布拉格光柵及二維週期性晶疇極化反轉鈮酸鋰於Nd:YVO4雷射內達成脈衝式窄頻光參量振盪器之研究★ 以非週期性晶疇極化反轉鈮酸鋰晶體作為電光波長調變光參量產生器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 穩定、高效率的藍光雷射光源對於生物醫療、雷射列印、光學儲存與讀取以及量測系統是最主要的元件。在藍光半導體雷射尚未普及化,本研究選用5mol.%鎂摻雜鈮酸鋰,利用該材料本身的高非線性係數及高抗光折變損害等優良特性製作波長轉換元件,發展以准相位匹配(quasi-phase matching)技術及低損耗光學波導製作技術以期能有高效率的藍光雷射輸出。
本研究以退火式質子交換(annealing proton exchanged APE)波導的技術建立了寬度3.5μm、4μm、4.5μm以及5μm寬;深度4μm的APE波導模型,利用此波導模型我們可以模擬基頻光以及二倍頻光在波導中的等效折射率,經由準相位匹配(quasi-phase matched)的條件我們可以計算出二倍頻轉換過程所需的週期。利用此波導模型我們製作出低損耗的APE波導,其傳播損耗經量測得到α = 0.15 dB/cm。本研究中利用外加高壓電場法成功的在5mol.%鎂摻雜鈮酸鋰上製作出14.7μm以及14.8 μm兩種極化反轉的第三階週期性結構,經由本研究所歸納出的經驗公式可以有效地將晶格反轉面積與全部面積的比例(duty)控制在50%。
我們亦在軟質子交換波導(soft proton exchanged waveguides)及第一階的準相位匹配週期性反轉結構(?< 5 ?m)的製作上獲致初步的結果。本文提供製程的改進方案並正持續進行中。
摘要(英) A stable and efficient blue laser source has been one of the key elements used in biomedical, laser display, optical storage, and optical measurement systems. As an alternative to an attractive but not yet mature blue diode laser, in this work we try to develop a fabrication method of a quasi-phase-matching (QPM) second-harmonic generator in a low-loss optical-waveguide for achieving a high-efficiency blue laser based on a 5 mol. % MgO:LiNbO3 characterized by high optical nonlinearity and high optical damage resistance.
We have studied using a series of annealed proton exchanged (APE) channel waveguides of widths 3.5 μm, 4 μm, 4.5 μm, and 5 μm and a depth 4 μm to establish a fabrication model of a 976-nm frequency doubled MgO:PPLN APE waveguide. With this model, we can deduce the QPM grating period for this waveguided frequency doubling process via the calculation of the effective refractive indices of the fundamental and second-harmonic waves. We also fabricated a qualified low-loss APE waveguide with a measured waveguide loss of ~0.15 dB/cm. Besides, in this work we have successfully implemented a 3rd order QPM grating period of ~14.8 μm in a MgO:LiNbO3 crystal for the 976-nm waveguided frequency doubling process. We are possible to fabricate these MgO:PPLN with a QPM grating of 50% duty cycle.
We have also obtained some preliminary results on the study and fabrication of the soft proton exchanged (SPE) waveguides and 1st order QPM grating in a MgO:LiNbO3. We will discuss the improvement and practice schemes of these two advanced fabrication methods.
關鍵字(中) ★ 鎂掺雜鈮酸鋰
★ 藍光雷射波導元件
關鍵字(英) ★ MgO:PPLN
★ waveguide
★ blue laser generation
論文目次 論文摘要……………………………………………………………………….Ⅰ
誌謝…………………………………………………………………………….Ⅳ
目錄…………………………………………………………………………….Ⅴ
圖目…………………………………………………………………………….Ⅶ
表目…………………………………………………………………………….Ⅸ
第一章 緒論
1-1非線性光學波導簡介………………………………………….1
1-2 研究動機………………………………………………………2
1-3 內容概要………………………………………………………4
第二章 理論
2-1 波導中的耦合原理……………………………………………5
2-2 準相位匹配技術………………………………………………7
第三章 質子交換波導模型
3-1質子交換波導簡介…………………………………………...10
3-2退火式質子交換波導理論…………………………………...12
3-3退火式波導模型建立………………………………………...14
第四章 元件製程
4-1週期性反轉結構製程………………………………………...17
4-2 波導製作……………………………………………………..24
第五章 結論與未來展望
5-1 結論…………………………………………………………..36
5-2 未來展望……………………………………………………..37
參考文獻…………………………………………………………………….41
參考文獻 [1] S. E. Miller, ”Integrated Optics : an introduction,” Bell. Syst.Tech.J.,48,p2059-2069(1969)
[2] M. Iwai, T. Yoshino, S. Yamaguchi, M. Imaeda, N. Pavel, I. Shoji, and T. Taira, ”high-power blue generation from a periodically poled MgO:LiNbO3 ridge-type waveguide by frequency doubling of a diode end-pumped Nd:Y3Al5O12 laser”, Appl. Phys. Lett.,83,p3659-3661(2003)
[3] Zhenhuan Ye, Qihong Lou, Jingxing Dong, Yunrong Wei, and Lei Lun, “compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide cystals”, Opt. Lett., 30, p.73(2005).
[4] D. A. Bryan, R. Gerson, and H. E. Tomasschke, “increased optical damage resistance in lithium niobate”, Appl. Phys. Lett.,44,p847-849(1984))
[5] R. G. Batchko, G. D. Miller, A. Alexandrovski et al., ”Limitations of high-power visible wavelength periodically poled Lithium Niobate devices due to green-induced infrared absorption and thermal lensing,” Conf. on Laser and Electro-Optics, Presentation CTuD6(Opt. Soc. Am., Washington D.C.,1998)
[6] Y. Furukawa, K. Kitamura, S. Takekawa, “Stoichiometric Mg:LiNbO3 as an effective material for nonlinear optics,” Opt. Lett., 23, pp1892-1894(1998).
[7] Masaki Asobe, Osamu Tadanaga, Tsutomu Yanagawa, Hiroki Itoh, and Hiroyuki Suzuki, ”Reducing photorefractivr effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett.,78,p3163-3165(2001)
[8] Y. C. Huang, ”principles of nonlinear optics”, course reader, national Tsinghua university,Taiwan(2002)
[9] Ming-Hsien Chou, “optical frequency mixers using three-wave mixing for optical fiber communications”(1999)
[10] M. M. Fejer, et al., IEEE J. Quantum Electron. Vol.28,p.2631(1992)
[11] Yu. N. Korkishko, and V. A. Fedorov ”Structural Phase Diagram of HxLi1-xNbO3 Waveguides: The Correlation Between Optical and Structural Properties,” IEEE J. Quantum Electronics.,vol.2,pp187-196(1996)
[12] Vittorio M. N. Passaro,”LiNbO3 Optical Waveguides Formed in a New Proton Source,” J. Light. Tech.,vol.20,pp71-77(2002)
[13] Yu. N. Korkishko, V. A. Fedorov, S. M. Kostritskii, E. I. Maslennikov, M. V. Frolova, and A. N. Alkaev “Proton-Exchanged Waveguides in MgO-doped LiNbO3: Optical and Structural Properties,” J. Appl. Phy.,vol.94,pp1163-1169(2003)
[14] L. Chanvillard, P.Aschieri, and P. Baldi, ”Soft Proton Exchange on periodically poled LiNbO3 : A Simple Waveguide Fabrication Process for Highly Efficient Nonlinear Interactions,” Appl. Phy. Vol76, pp1089-1091(2000)
[15] Yu. N. Korkishko, “LiNbO3 Optical Waveguide Fabrication by High-Temperature Proton Exchange,” J. Light. Tech.,vol.18,pp562-568(2000)
[16] Yu. N. Korkishko, V. A. Fedorov, E. A. Baranov, M. V. Proyaeva, and T. V. Morozova, “Characterization of α-phase Soft Proton Exchanged LiNbO3 Optical Waveguides,” J. Opt. Soc. Am. A, vol.18,pp1186-1191(2001)
[17] D. H. Tsou, M. H. Chou, P. Santhanaraghavan, Y. H. Chen, and Y. C. Haung, “Structure of Optical Characterization of Vapor-Phase Proton Exchanged LiNbO3 Waveguides,”Mater. Chem. And Phys.vol.78,pp474-479(2002)
[18] L. Rams and J. M. Cabrera, “Preparation of proton-exchange LiNbO3 Waveguides in Benzoic Acid Vapor,” J. Opt. Soc. Am. B, vol.16, pp401-406(1999)
[19]Yu. N. Korkishko, V. A. Fedorov, and T. M. Morozova, “Reverse Proton Exchange for Buried Waveguides in LiNbO3,” J. Opt. Soc. Am. B,vol.15,pp1838-1842(1998)
[20] Sandeep T. Vohra, Alan R. Mickelson, and Sally E. Asher, ”diffusion characteristics and waveguiding properties of proton-exchanged and annealed LiNbO3 channel waveguides”, J. Appl. Phys. Vol.66,p.5161-5174(1989)
[21] X. F. Cao et al., J. Light. Tech.,vol.10,pp1302(1992)
[22] David E. Zelmon and David L. Small, ”Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5mol.% magnesium oxide-doped lithium niobate” J. Opt. Soc. Am. B,vol.14,pp3319-3322(1997)
[23] http://www. yamatsu.com
[24] D. A. Bryan, Robert Gerson, H. E. Tomaschke, ”Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett.,44,p847-849(1984)
[25] Y. Ishigame, T. Suhara, and H. Nishihara, ”LiNbO3 waveguide second-harmonic generation device phase matched with a fan-out domain-inverted grating,” Opt. Lett., vol.16, p375-377(1991)
[26] J. Webjorn, F. Laurell, G. Arvidsson, “Blue light generated by frequency doubling of Laser diode light in a lithium niobate channel waveguide,” IEEE Photon Techonol.Lett.,vol.1,p316-318(1989)
[27] M. Yamada, N. Nada, M. Saitoh and K. Watanabe,”First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett.,vol.62, p435-436(1993)
[28] Alan. C. G. Nutt, Venkatraman Gopalan, and Mool C. Gupta,”Domain inversion in LiNbO3 using direct electron-beam writing,” Appl. Phys. Lett.,vol.60, p2828-2830(1992)
[29] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “electric-field poling in Mg-doped LiNbO3”, J. Appl. Phys.,vol.96,p6585-6590(2004)
[30] G. D. Miller” Periodically poled lithium niobate : modeling,fabrication,and nonlinear-optical performance”
[31] H.Ishizuki, I. Shoji, and T. Taira, ”Periodically poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett.,vol.82, p4062-4064(2003)
[32]黃俊育,”主動式多通道窄頻寬通Ti:PPLN波導濾波以及模態轉換器之研究”中央大學碩士論文,DOP(2006)
[33] A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields” Appl. Phys. Lett.,vol.69,p1565-1567(1996)
[34] M. L. Bortz, and M. M. Fejer, “annealed proton-exchanged LiNbO3 waveguides”, Opt. Lett., 16, p.1844-1846(1991).
[35] R. Regener, and W. Sohler, ”loss in low-finesse Ti:LiNbO3 optical waveguide resonators ”, Appl. Phys. B,vol.36,p.143-147(1985)
指導教授 陳彥宏(Chen Yen-Hung) 審核日期 2007-12-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明