博碩士論文 942206053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.204.173.45
姓名 張志誠(Chih-Cheng Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 對稱與非對稱波導光柵之特性研究
(Study in the properties of symmetry and asymmetry waveguide gratings.)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 雙曲透鏡之研究★ 電磁波與聲波隱形斗篷之研究
★ 一維光子晶體等效非均向介值之研究★ 手徵超材料之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 波導光柵在特定條件下,會產生波導模態共振,這種現象造成繞射效率會急遽的變化。利用這種特性可以設計出許多光學元件,諸如偏振器、濾波器等。傳統的方法是利用對稱型波導光柵及薄層的多層相互堆疊,達到單層對稱結構無法做到的共振效應。本論文提出新的設計結構─單層多折射率非對稱型波導光柵,這種結構是在一個周期中,置入超過兩種折射率且填充因子也跟著變化,利用這種結構,可以設計出達到多層波導光柵同樣的效應,且能大幅減低堆疊的層數,提供更簡便的設計和製程方法。
摘要(英) Guided-mode resonance (GMR) effect occurring in waveguide grating causes the dramatic change of diffraction efficiency under particular conditions. It finds applications to the optical devices, such as filters and polarizers. Typically, GMR phenomenon cannot be realized by using single-layer grating, but can be realized in the structure consisting of a symmetrical waveguide gratings and thin-film layers. In this paper, we design a new type of optical filters. The structure uses only single asymmetric waveguide grating, without thin-film layers. The asymmetric waveguide is formed by periodically arranging more than two kinds of dielectric materials. This new type of filters can achieve the same effects as in the traditionally designed multilayer structures. In addition, they have the advantages of more compact sizes and are easier to be fabricated.
關鍵字(中) ★ 非對稱
★ 波導光柵
關鍵字(英) ★ waveguide grating
★ asymmetry
論文目次 中文摘要 ------------------------------ Ⅰ
英文摘要 ------------------------------ Ⅱ
致謝 ------------------------------ Ⅲ
目錄 ------------------------------ Ⅳ
圖目錄 ------------------------------ V
第一章 序論---------------------------- 1
第二章 理論分析--------------------------- 5
2-1 波導光柵特性----------------------- 5
2-2 單層對稱光柵的嚴格耦合波分析------- 7
2-3 單層非對稱光柵的嚴格耦合波分析----- 14
2-4 非對稱結構與第二帶隙--------------- 16
第三章 模擬分析--------------------------- 17
3-1 單層對稱型波導光柵----------------- 17
3-2 單層三折射率非對稱型波導光柵------- 20
3-3 單層三折射率非對稱型波導光柵之應用- 27
3-4 單層四折射率非對稱波導光柵--------- 28
3-5 單層四折射率非對稱波導光柵之應用--- 35
第四章 結論------------------------------- 40
參考資料 ----------------------------------- 41
參考文獻 [1] A. Hessel and A.A. Oliner, “Anew theory of Wood’s anomalies on optical gratings,” AQppl. Opt., vol. 10, pp.1275-1297, October 1965.
[2] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396 (1902).
[3] S.S. Wang, R. Magnusson, J.S. Bagby, and M.G. Moharam, “Waveguide mode-induced resonances in planar diffraction gratings,” J. Opt. Soc. Am. A, vol. 8, pp. 1470-1475, August 1990.
[4] Z.S. Liu, S. Tibuleac, D. Shin, P.P. Young, and R. Magnusson, “High-efficiency guided-mode resonance laser mirror,” Proceeding of the Topical Meeting on Diffractive Optics and Micro-Optics, Kailua-Kona, Hawaii, June, 1998 and Optics & Photonics News, vol. 9, p.40, October 1998.
[5] A. Sharon, D. Eosenblatt, A.A. Friesem, H.G. Weber, H. Engel, and R. Steingrueber, “Light modulation with resonant grating-waveguide structures,” Opt. Lett., vol. 21, pp.1564-1566, October 1996.
[6] D.L. Brundrett, E.N. Glytsis, and T.K. Gaylord, “Normal-incidence guided-mode resonant grating filters: design and experimental demonstration,” Opt. Lett., vol. 23, pp.700-702, May1998.
[7] R. Magnusson, D. Shin, and Z.S. Liu, ”Guided-mode resonance Brewster filter,” Opt. Lett., vol. 23, pp.612-614, April 1998.
[8] R. Magnusson and S.S. Wang, “Transmission bandpass guided-mode resonance filters,” Appl. Opt., vol. 34, pp.8106-8109, December 1995.
[9] S. Tibuleac and R. Magnusson, “Diffractive narrow-band transmission filters based on guided-mode resonance effect in thin-film multilayers,” IEEE Photon. Tech. Lett., vol. 9, pp.464-467, April 1997.
[10] S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549-551 (1996).
[11] D. Rosenblatt, A. Sharon, and A. A. Friesem, “Resonant grating waveguide structure,” IEEE J. Quant. Electronics 33, 2038-2059 (1997).
[12] Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, "High-efficiency guided-mode resonance filter," Opt. Lett. 23, 1556-1558 (1998).
[13] P. S. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83, 3248-3250, 20 October 2003.
[14] M. T. Gale, K. Knop, and R. H. Morf, "Zero-order diffractive microstructures for security applications," Proc. SPIE on Optical Security and Anticounterfeiting Systems 1210, 83-89 (1990).
[15] D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Normal-incidence guided-mode resonant grating filters : design and experimental demonstration,” Opt. Lett. 23, 700-702 (1998).
[16] C. F. R. Mateus, M. C. Y. Huang, Y. Deng, A. R. Neureuther, and C. J. Chang-Hasnain, “Ultrabroadband mirror using low-index cladded subwavelength grating,” IEEE Photonics Tech. Lett. 16, 518-520 (2004).
[17] C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 m) using a subwavelength grating,” IEEE Photonics Tech. Lett. 16, 1676-1678 (2004).
[18] W. Suh and S. Fan, "All-pass transmission or flattop reflection filters using a single photonic crystal slab," Appl. Phys. Lett. 84, 4905-4907 (2004).
[19] Z. S. Liu and R. Magnusson, “Concept of multiorder multimode resonant optical filters,” IEEE Photonics Tech. Lett. 14, 1091-1093 (2002).
[20] Y. Ding and R. Magnusson, “Doubly-resonant single-layer bandpass optical filters,” Opt. Lett. 29, 1135-1137 (2004).
[21] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
[22] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction—E-mode polarization and losses,” J. Opt. Soc. Am. 73, 451–455 (1983).
[23] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
[24] M. G. Moharam, “Coupled-wave analysis of two-dimensional gratings,” in Holographic Optics: Design and Applications, I. Cindrich, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 883, 8–11 (1988).
[25] E. N. Glytsis and T. K. Gaylord, “Rigorous three-dimensional coupled-wave diffraction analysis of single and cascaded anisotropic gratings,” J. Opt. Soc. Am. A. 4, 2061–2080 (1987).
[26] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupledwave analysis for surface-relief dielectric gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A
12, 1077–1086 (1995).
[27] T. K. Gaylord and M. G. Moharam , “Analysis and Applications of Optical
Diffraction by Gratings,” PROCEEDINGS OF THE IEEE, VOL. n, NO. 5, MAY 1985.
[28] S. Tibuleac, Characteristics of reflection and transmission waveguide-grating filters, MS Theses, The University of Texas at Arlington, August 1996.
[29] S.S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, pp.2606-2613, May 1993.
[30] S.S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett., vol. 19, pp. 919-921, June 1994
[31]. S. Tibuleac and R. Magnusson, “Narrow-linewidth bandpass filters with diffractive thin-film layers,” Opt. Lett. 26, 584-586 (2001).
[32]. Y. Ding and R. Magnusson, “Use of nondegenerate resonant leaky modes to fashion diverse optical spectra,” Opt. Express. 12, 1885-1891 (2004).
[33] D. L. Brundrett, E. N. Glytsis, T. K. Gaylord, and J. M. Bendickson, “Effects of modulation strength in guided-mode resonant subwavelength gratings at normal incidence,” J. Opt. Soc. Am. A. 17, 1221-1230 (2000).
[34] Y. Ding and R. Magnusson, ” Resonant leaky-mode spectral-band engineering
and device applications,” OPTICS EXPRESS Vol. 12, No 23, pp.5661-5674, 15 November 2004
[35] M. G. Moharam, Eric B. Grann, and Drew A. Pommet, ”Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A/Vol. 12, No. 5/May 1995 pp.1068-1076
[36] S. Tibuleac, Characteristics of reflection and transmission waveguide-grating filters, MS Thesis, The University of Texas at Arlington, August 1996
[37] S. Tibuleac, S.S. Wang. R. Magnusson, T.A. Maldonado, and A. Oberhofer, “Linewidth broadening mechanisms of waveguide-grating filters,” Optical Society of America Annual Meeting, Portland, Oregon, September 10-15,1995.
[38]R. F. Kazarinov and C. H. Henry, “Second-order distributed feedback lasers with mode selection provided by first-order radiation loss,” IEEE J. Quantum Electron QE-21, 144-150 (1985).
指導教授 欒丕綱(Pi-Gang Luan) 審核日期 2007-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明