博碩士論文 942209001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.141.7.130
姓名 王詠晶(Yung-Ching Wang)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 太陽風與水星磁層及地表外氣層之交互作用
(Solar Wind Interaction with Mercury's Magnetosphere and its Surface-Bounded Exosphere)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 行星外氣層的結構與演化受到許多因素所影響,包含地表的產生率、與表土的交互作用、太陽風離子的濺射作用等等。為了更了解外氣層的本質,地表的特性和太陽風的交互作用都是很重要的相關議題。反之,我們也可以藉由從外氣層所導出的訊息,得知地表的特質、太陽風離子的撞擊形式和重離子的分佈。為此,雖然我們一開始分別討論各個主題,但最終的目標是想從整體上來認識在太陽系裡沒有大氣層的物體上,其元素之固態、氣態與電漿態的三種不同面向 。
本論文的課題是利用地表熱能模型、二維和三維外氣層模型和三維混合粒子電漿模型來學習水星外氣層與磁層的結構。在沒有豐厚的電離層影響的情況下,透過與觀測與測量的結果比較, 我們學習到外氣層的特徵與其地表的交互作用,還有包括了基本的磁層形態。當結合地表熱能模型所導出的溫度分佈與外氣層模型之後,我們計算出水星外氣層氣體的熱平衡狀態,其中包含了生命期較長的氦與氧原子氣體,和生命期較短的鈉原子氣體。我們也應用混合粒子模型來了解信使號太空船兩次飛過水星時所量測到的表面離子滲透分佈與磁層結構。將來如果結合外氣層與混合粒子兩種模型的結果,從外氣層氣體游離出來之重離子的流動狀態也會是個值得加以討論的議題。
摘要(英) The structure and evolution of the exosphere on a planet involves numerous factors, including the source rate from the surface, the interaction with the regolith, the solar wind ion sputtering effect, and so on. In order to have a better understanding on the nature of the exosphere, the characteristics of the surface and the solar wind interactions are also important issues. Vice versa, the information hidden in the exosphere can give us clues on the surface properties, the solar wind ion bombardment patterns, and the heavy ion distributions. Therefore, although initially we have treated each topic separately, the ultimate objective is to apprehend the elements, with solid, gas, and plasma states, of a solar system object without an atmosphere as a whole.
In this work, the surface thermal model, 2D and 3D exospheric models, and the 3D hybrid model are applied to the studies on the exosphere and the magnetosphere structures of Mercury. Through the comparisons with the observations and measurements, we have learned the exospheric features and their interactions with the surface, as well as the fundamental morphology of the magnetosphere without the inclusion of a substantial ionosphere. The thermal accommodation effects on both longer lifetime exospheric atoms, helium and oxygen, and a shorter one, sodium, are calculated with our exospheric model combined with the surface temperature distribution from the thermal model on Mercury. The surface ion precipitation rate and the magnetosphere measured from the first two flybys of MESSENGER are also learned via the hybrid simulations. The circulations of the heavy ions produced from the exosphere is also an interesting subject to discuss with the joint results from the exospheric and the hybrid computations in future.
關鍵字(中) ★ 水星
★ 磁層
★ 外氣層
★ 太陽風交互作用
關鍵字(英) ★ Magnetosphere
★ Mercury
★ Solar wind interaction
論文目次 Abstract vii
Acknowledgements viii
List of Figures xiii
List of Tables xix
Abbreviations xxi
Physical Constants xxiii
Symbols xxv
1 Introduction 1
1.1 The surface-exosphere-magnetosphere coupling system of Mercury . . . . 1
1.1.1 The exosphere of Mercury . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 The solar wind interaction with Mercury . . . . . . . . . . . . . . . 5
1.2 Solar system objects without atmospheres . . . . . . . . . . . . . . . . . . 7
2 The exosphere of Mercury 9
2.1 Surface temperature variations . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Thermal dependency of exospheric He and O . . . . . . . . . . . . . . . . 13
2.2.1 The 2D Hodges exospheric model calculation . . . . . . . . . . . . 13
2.2.2 The modeled Temperature and number density relation . . . . . . 18
2.3 Source dependency of exospheric Na . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 The 3D exospheric model . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Model calculations and observational comparisons . . . . . . . . . 28
2.3.2.1 Initial speed distribution . . . . . . . . . . . . . . . . . . 28
2.3.2.2 Disk emission . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2.3 Terminator to limb ratio . . . . . . . . . . . . . . . . . . 32
2.3.2.4 Tail production rate . . . . . . . . . . . . . . . . . . . . . 34
2.3.2.5 Altitude distribution . . . . . . . . . . . . . . . . . . . . . 39
2.3.3 Source rate variation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.3.1 Orbital variation of the MIV Source . . . . . . . . . . . . 40
2.3.3.2 Surface abundance variation . . . . . . . . . . . . . . . . 46
2.3.4 Comparisons with the observations at Haleakala Observatory . . . 48
3 The solar wind interaction with Mercury 51
3.1 The 3D hybrid model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 A hybrid simulation of Mercury’’s magnetosphere for the MESSENGER
encounters in year 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 The structure of the magnetosphere . . . . . . . . . . . . . . . . . 56
3.3 Exospheric and magnetospheric responses to large solar wind disturbances 63
3.3.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Global structure variations . . . . . . . . . . . . . . . . . . . . . . 66
3.3.3 Surface precipitation rates . . . . . . . . . . . . . . . . . . . . . . . 70
4 Summary 75
4.1 The exosphere of Mercury . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 The solar wind interaction with Mercury . . . . . . . . . . . . . . . . . . . 77
A The thermal model and the O2 exosphere of Saturn’’s ring 81
A.1 Thermal model of the main ring . . . . . . . . . . . . . . . . . . . . . . . 82
A.1.1 Saturn’’s shadow on the ring plane . . . . . . . . . . . . . . . . . . 82
A.1.2 Solar energy
ux on the rings . . . . . . . . . . . . . . . . . . . . . 85
A.1.3 Results from the thermal model . . . . . . . . . . . . . . . . . . . . 86
A.2 O2 exosphere model on the main ring . . . . . . . . . . . . . . . . . . . . 88
A.2.1 Charge exchange with O+
2 . . . . . . . . . . . . . . . . . . . . . . . 90
A.2.2 Results from the O2 exospheric model . . . . . . . . . . . . . . . . 92
A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
B Mathematics in the thermal and exospheric model calculations 97
B.1 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
B.1.1 Crank-Nicolson method . . . . . . . . . . . . . . . . . . . . . . . . 98
B.1.1.1 Thermal di usion . . . . . . . . . . . . . . . . . . . . . . 98
B.1.1.2 Magnetic di usion . . . . . . . . . . . . . . . . . . . . . . 101
B.1.2 Solving a set of linear equations . . . . . . . . . . . . . . . . . . . . 102
B.1.2.1 Direct methods: Gaussian elimination and back-institution
and Tridiagonal systems . . . . . . . . . . . . . . . . . . 102
B.1.2.2 Iterative methods: Gauss-Seidel method and Successive
over relaxation (SOR) method . . . . . . . . . . . . . . . 106
B.2 Keplerian Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
B.2.1 Orbital evolution of Mercury . . . . . . . . . . . . . . . . . . . . . 111
B.2.1.1 Orbital elements . . . . . . . . . . . . . . . . . . . . . . . 111
B.2.1.2 The solar energy
ux evolutions . . . . . . . . . . . . . . 114
B.2.2 Orbits of exospheric atoms . . . . . . . . . . . . . . . . . . . . . . 115
B.2.2.1 2D Hodges model . . . . . . . . . . . . . . . . . . . . . . 115
B.2.2.2 3D Hodges model . . . . . . . . . . . . . . . . . . . . . . 118
B.2.2.3 T-n relation . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.3 The 3D exospheric model . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.3.1 Ejection velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.3.2 Planetary motions . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3.3 Radiation pressure acceleration . . . . . . . . . . . . . . . . . . . . 124
B.3.4 Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Bibliography 131
參考文獻 Alexeev, I. I., Belenkaya, E. S., Slavin, J. A., Korth, H., Anderson, B. J., Baker, D. N., Boardsen, S. A., Johnson, C. L., Purucker, M. E., Sarantos, M., and Solomon, S. C. (2010). Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus, 209, 23–39.
Anderson, B. J., Acun ̃a, M. H., Korth, H., Purucker, M. E., Johnson, C. L., Slavin, J. A., Solomon, S. C., and McNutt, R. L. (2008). The structure of Mercury’s magnetic field from MESSENGER’s first flyby. Science, 321, 82–85.
Bagdonat, T. (2004). Hybrid simulation of weak comets. Ph.D. thesis Technische Uni- versit ̈at Braunschweig.
Bagdonat, T., and Motschmann, U. (2002). From a weak to a strong comet−3d global hybrid simulation studies. Earth, Moon and Planets, 90, 305–321.
Benkhoff, J., and Schulz, R. (2006). BepiColombo-mpo scientific aspects and system update. In Advances in Geosciences (pp. 51–62). World Scientific Publishing Co. Pte. Ltd, Singapore, Hackensack and London volume 3.
Benna, M., Anderson, B. J., Baker, D. N., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., Purucker, M. E., McNutt, R. L., Raines, J. M., McClintock, W. E., Sarantos, M., Slavin, J. A., Solomon, S. C., and Zurbuchen, T. H. (2010). Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus, 209, 3–10.
Borin, P., Bruno, M., Cremonese, G., and Marzari, F. (2010). Estimate of the neutral atoms’ contribution to the Mercury exosphere caused by a new flux of micromete- oroids. Astronomy and Astrophysics, 517, A89.
Broadfoot, A. L., Kumar, S., Belton, M. J. S., and McElroy, M. B. (1974). Mercury’s atmosphere from Mariner 10: preliminary results. Science, 185, 166–169.
Broadfoot, A. L., Shemansky, D. E., and Kumar, S. (1976). Mariner 10 - Mercury atmosphere. Geophysical Research Letters, 3, 577–580.
Burger, M. H., Killen, R. M., Vervack, R. J., Bradley, E. T., McClintock, W. E., Saran- tos, M., Benna, M., and Mouawad, N. (2010). Monte Carlo modeling of sodium in Mercury’s exosphere during the first two MESSENGER flybys. Icarus, 209, 63–74.
Cheng, A. F., Johnson, R. E., Krimigis, S. M., and Lanzerotti, L. J. (1987). Magneto- sphere, exosphere, and surface of Mercury. Icarus, 71, 430–440.
Christensen, U. R. (2006). A deep dynamo generating Mercury’s magnetic field. Nature, 444, 1056–1058.
Cintala, M. J. (1992). Impact-induced thermal effects in the lunar and mercurian re- goliths. Journal of Geophysical Research, 97, 947–973.
Delcourt, D. C., Grimald, S., Leblanc, F., Berthelier, J.-J., Milillo, A., Mura, A., Orsini, S., and Moore, T. E. (2003). A quantitative model of the planetary Na+ contribution to Mercury’s magnetosphere. Annales Geophysicae, 21, 1723–1736.
Domingue, D. L., Koehn, P. L., Killen, R. M., Sprague, A. L., Sarantos, M., Cheng, A. F., Bradley, E. T., and McClintock, W. E. (2007). Mercury’s atmosphere: a surface-bounded exosphere. Space Science Reviews, 131, 161–186.
Farmer, A. J., and Goldreich, P. (2007). How much oxygen is too much? constraining Saturn’s ring atmosphere. Icarus, 188, 108–119.
Ferrari, C., Galdemard, P., Lagage, P. O., Pantin, E., and Quoirin, C. (2005). Imag- ing Saturn’s rings with camiras: thermal inertia of B and C rings. Astronomy and Astrophysics, 441, 379–389.
Fowles, G. R., and Cassiday, G. L. (1998). Analytical Mechanics. (Sixth ed.). Harcourt College Publisher.
Fulle, M., Leblanc, F., Harrison, R. A., Davis, C. J., Eyles, C. J., Halain, J. P., Howard, R. A., Bockel ́ee-Morvan, D., Gremonese, G., and Scarmato, T. (2007). Discovery of the atomic iron tail of comet McNaught using the heliospheric imager on STEREO. Astrophysical Journal, 661, L93–L96.
Gerald, C. F., and Wheatley, P. O. (2004). Applied Numerical Analysis. (Seventh ed.). Pearson International Edition.
Glassmeier, K.-H. (2000). Currents in Mercury’s magnetosphere. In Magnetospheric Current Systems (pp. 371–380). AGU Geophysical Monograph volume 118.
Gombosi, T. I., Dezeeuw, D. L., Groth, C. P. T., Hansen, K. C., Kabin, K., and Powell, K. G. (2000). MHD simulations of current systems in planetary magneto- spheres:Mercury and Saturn. In Magnetospheric Current Systems (p. 363). AGU Geophysical Monograph volume 118.
Gubbins, D. (1997). Speculations on the origin of the magnetic field of Mercury. Icarus, 30, 186–191.
Hodges, R. R. (1973). Helium and hydrogen in the lunar atmosphere. Journal of Geophysical Research, 78, 8055–8064.
Huebner, W. F., Keady, J. J., and Lyon, S. P. (1992). Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophysics and Space Science, 195, 1–294.
Hunten, D. M., Shemansky, D. E., and Morgan, T. H. (1988). The Mercury atmosphere. In F. Vilas, C. R. Chapman, and M. S. Matthews (Eds.), Mercury (pp. 562–612). Tucson, AZ, University of Arizona Press.
Ip, W.-H. (1986a). Cassini instruments related to interaction between magnetosphere and surfaces. In N. Longdon (Ed.), The Solid Bodies of the Outer Solar System (p. 179). Proceedings of a conference held at Vulcano, Italy, 9-13 September, 1985.
Ip, W.-H. (1986b). The sodium exosphere and magnetosphere of Mercury. Geophysical Research Letters, 13, 423–426.
Ip, W.-H. (1987). Dynamics of electrons and heavy ions in Mercury’s magnetosphere. Icarus, 71, 441–447.
Ip, W.-H. (1990). On solar radiation-driven surface transport of sodium atoms on Mer- cury. Astrophysical Journal, 356, 675–681.
Ip, W.-H. (1993a). Mercury and the moon, atmospheres. In S. P. Maran (Ed.), The Astronomy and Astrophysics Encyclopedia (pp. 418–420). Van Nostrand Reinhold, New York, and Cambridge University Press, Cambridge, Melbourne, Sydney.
Ip, W.-H. (1993b). On the surface sputtering effects of magnetospheric charged particles at Mercury. Astrophysical Journal, 418, 451–456.
Ip, W.-H. (1997). Time-variable phenomena in the magnetosphere and exosphere of Mercury. Advances in Space Research, 19, 1615.
Ip, W.-H., and Kopp, A. (2002a). MHD simulations of the solar wind interaction with Mercury. Journal of Geophysical Research, 107, 1348.
Ip, W.-H., and Kopp, A. (2002b). Resistive MHD simulations of Ganymede’s magneto- sphere 2. Birkeland currents and particle energetics. Journal of Geophysical Research, 107, SMP 41–1.
Ip, W.-H., and Wang, Y.-C. (2010). A comparison of the exospheres of Mercury and the Moon. Advances in Geosciences, 19, 1–8.
Janhunen, P., and Kallio, E. (2004). Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry. Annales Geophysicae, 22, 1829– 1837.
Johnson, R. E., and Baragiola, R. (1991). Lunar surface - sputtering and secondary ion mass spectrometry. Geophysical Research Letters, 18, 2169–2172.
Johnson, R. E., Luhmann, J. G., Tokar, R. L., Bouhram, M., Berthelier, J. J., Sittler, E. C., Cooper, J. F., Hill, T. W., Smith, H. T., Michael, M., Liu, M., Crary, F. J., and Young, D. T. (2006). Production, ionization and redistribution of o2 in Saturn’s ring atmosphere. Icarus, 180, 393–402.
Kabin, K., Gombosi, T. I., Dezeeuw, D. L., and Powell, K. G. (2000). Interaction of Mercury with the solar wind. Icarus, 143, 397–406.
Kallio, E., and Janhunen, P. (2003). Modeling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Annales Geophysicae, 21, 2133–2145.
Kameda, S., Yoshikawa, I., Kagitani, M., and Okano, S. (2009). Interplanetary dust dis- tribution and temporal variability of Mercury’s atmospheric Na. Geophysical Research Letters, 36, L15201.
Keller, H. U., and Thomas, G. E. (1975). A cometary hydrogen model-comparison with OGO-5 measurements of comet Bennett (1970II). Astronomy and Astrophysics, 39, 7–19.
Killen, R. M., and Ip, W.-H. (1999). The surface-bounded atmospheres of Mercury and the Moon. Reviews of Geophysics, 37, 361–406.
Killen, R. M., Potter, A. E., Fitzsimmons, A., and Morgan, T. H. (1999). Sodium D2 line profiles: clues to the temperature structure of Mercury’s exosphere. Planetary and Space Science, 47, 1449–1458.
Killen, R. M., Potter, A. E., Reiff, P., Sarantos, M., Jackson, B. V., Hick, P., and Giles, B. (2001). Evidence for space weather at Mercury. Journal of Geophysical Research, 106, 20509–20526.
Killen, R. M., Sarantos, M., Potter, A. E., and Reiff, P. (2004). Source rates and ion recycling rates for Na and K in Mercury’s atmosphere. Icarus, 171, 1–19.
Killen, R. M., Shemansky, D. E., and Mouawad, N. (2009). Expected emission from Mercury’s exospheric species, and their ultraviolet-visible signatures. Astrophysical Journal Supplement Series, 181, 351–359.
Kopp, A., and Ip, W.-H. (2002). Resistive MHD simulations of Ganymede’s magne- tosphere 1. time variabilities of the magnetic field topology. Journal of Geophysical Research, 107, SMP 41–1.
Leblanc, F. (2006). Earth ground-based observations of Mercury exosphere- magnetosphere-surface relations. In Advances in Geosciences (pp. 5–15). World Sci- entific Publishing Co. Pte. Ltd, Singapore, Hackensack and London volume 3.
Leblanc, F., and Johnson, R. E. (2003). Mercury’s sodium exosphere. Icarus, 164, 261–281.
Leblanc, F., Luhmann, J. G., Johnson, R. E., and Liu, M. (2003). Solar energetic particle event at mercury. Planetary and Space Science, 51, 339–352.
Liu, Y., Richardson, J. D., and Belcher, J. W. (2005). A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4 AU. Planetary and Space Science, 53, 3–17.
Madey, T. E., Yakshinsky, B. V., Ageev, V. N., and Johnson, R. E. (1998). Desorption of alkali atoms and ions from oxide surfaces: relevance to origins of Na and K in atmosphere of Mercury and the moon. Journal of Geophysical Research, 103, 5873– 5887.
McClintock, W. E., Vervack, R. J., Bradley, E. T., Killen, R. M., Mouawad, N., Sprague, A. L., Burger, M. H., Solomon, S. C., and Izenberg, N. R. (2009). MESSENGER observations of Mercury’s exosphere: detection of magnesium and distribution of con- stituents. Science, 324, 610–613.
McGrath, M. A., Johnson, R. E., and Lanzerotti, L. J. (1986). Sputtering of sodium on the planet Mercury. Nature, 323, 694–696.
Milillo, A., Wurz, P., Orsini, S., Delcourt, D., Kallio, E., Killen, R. M., Lammer, H., Massetti, S., Mura, A., Barabash, S., Cremonese, G., Daglis, I. A., Angelis, E., Lellis, A. M., Livi, S., Mangano, V., and Torkar, K. (2005). Surface-exosphere- magnetosphere system of Mercury. Space Science Reviews, 117, 397–443.
Mouawad, N., Burger, M. H., Killen, R. M., Potter, A. E., McClintock, W. E., Vervack, R. J., Bradley, E. T., Benna, M., and Naidu, S. (2011). Constraints on mercury’s na exosphere: Combined messenger and ground-based data. Icarus, 211, 21–36.
Mu ̈ller, J., Simon, S., Motschmann, U., Schu ̈le, J., Glassmeier, K.-H., and Pringle, G. J. (2011). A.I.K.E.F.: adaptive hybrid model for space plasma simulations. Computer Physics Communications, 182, 946–966.
Mu ̈ller, J., Simon, S., Wang, Y.-C., Motschmann, U., Heyner, D., Schu ̈le, J., Ip, W.-H., Kleindienst, G., and Pringle, G. J. (2012). Origin of Mercury’s double magnetopause: 3d hybrid simulation study with A.I.K.E.F. Icarus, 218, 666–687.
Mura, A., Milillo, A., Orsini, S., and Massetti, S. (2007). Numerical and analytical model of Mercury’s exosphere: dependence on surface and external conditions. Planetary and Space Science, 55, 1569–1583.
Mura, A., Orsini, S., Milillo, A., Delcourt, D., Lellis, A. M., Angelis, E., and Massetti, S. (2006). Neutral atoms emission from Mercury. In Advances in Geosciences (pp. 37–50). World Scientific Publishing Co. Pte. Ltd, Singapore, Hackensack and London volume 3.
Mura, A., Wurz, P., Lichtenegger, H. I. M., Schleicher, H., Helmut, L., Delcourt, D., Milillo, A., Orsini, S., Massetti, S., and Khodachenko, M. L. (2009). The sodium exosphere of Mercury: comparison between observations during Mercury’s transit and model results. Icarus, 200, 1–11.
Murray, C. D., and Dermott, S. F. (1999). Solar System Dynamics. Cambridge Univer- sity Press.
Nash, D. B., Matson, D. L., Johnson, T. V., and Fanale, F. P. (1975). Na-D line emission from rock specimens by proton bombardment - implications for emissions from Jupiter’s satellite Io. Journal of Geophysical Research, 80, 1875–1879.
Ness, N. F., Behannon, K. W., Lepping, R. P., Whang, Y. C., and Schatten, K. H. (1974). Magnetic field observations near Mercury: Preliminary results from Mariner 10. Science, 185, 151–160.
Omidi, N., Blanco-Cano, X., Russell, C. T., and Karimabadi, H. (2006). Global hybrid simulations of solar wind interactions with Mercury: Magnetospheric boundaries. Ad- vances in Space Research, 38, 632–638.
Orsini, S., Blomberg, L. G., Delcourt, D., Grard, R., Massetti, S., Seki, K., and Slavin, J. (2007). Magnetosphere-exosphere-surface coupling at Mercury. Space Science Re- views, 132, 551–573.
O ̈zisik,M.N.(1968).Boundaryvalueproblemsofheatconduction.chapterNumerical solution of heat-conduction problems. (pp. 389–454). General Publishing Company, Ltd., Constable and Company, Ltd., Ontario, Canada, London.
Potter, A. E. (1995). Chemical sputtering could produce sodium vapor and ice on Mercury. Geophysical Research Letters, 22, 3289–3292.
Potter, A. E., and Killen, R. M. (2008). Observations of the sodium tail of Mercury. Icarus, 194, 1–12.
Potter, A. E., Killen, R. M., and Morgan, T. H. (1999). Rapid changes in the sodium exosphere of Mercury. Planetary and Space Science, 47, 1141–1148.
Potter, A. E., Killen, R. M., and Morgan, T. H. (2002). The sodium tail of Mercury. Meteoritics and Planetary Science, 37, 1165–1172.
Potter, A. E., Killen, R. M., and Morgan, T. H. (2007). Solar radiaiton acceleration effects on Mercury sodium emission. Icarus, 186, 571–580.
Potter, A. E., Killen, R. M., and Sarantos, M. (2006). Spatial distribution of sodium on Mercury. Icarus, 181, 1–12.
Potter, A. E., and Morgan, T. H. (1985). Discovery of sodium in the atmosphere of Mercury. Science, 229, 651–653.
Potter, A. E., and Morgan, T. H. (1986). Potassium in the atmosphere of Mercury. Icarus, 67, 336–340.
Potter, A. E., and Morgan, T. H. (1987). Variation of sodium on Mercury with solar radiation pressure. Icarus, 71, 472–477.
Russell, C. T., Baker, D. N., and Slavin, J. A. (1988). Mercury. chapter The magneto- sphere of Mercury. (pp. 514–561). University of Arizona Press.
Sarantos, M., Reiff, P. H., Hill, T. W., Killen, R. M., and Urquhart, A. L. (2001). A Bx-interconnected magnetosphere model for Mercury. Planetary and Space Science, 49, 1629–1635.
Sarantos, M., and Slavin, J. A. (2009). On the possible formation of Alfv ́en wings at Mercury during encounters with coronal mass ejections. Geophysical Research Letters, 36, L04107.
Sarantos, M., Slavin, J. A., Benna, M., Boardsen, S. A., Killen, R. M., Schriver, D., and Tr ́avn ́ıˇcek, P. (2009). Sodium-ion pickup observed above the magnetopause during messenger’s first mercury flyby: Constraints on neutral exospheric models. Geophys- ical Research Letters, 36, L04106.
Schleicher, H., Wiedemann, G., W ̈ohl, H., Berkefeld, T., and Soltau, D. (2004). Detec- tion of neutral sodium above Mercury during the transit on 2003 may 7. Astronomy and Astrophysics, 425, 1119–1124.
Schmidt, C. A., Wilson, J. K., Baumgardner, J., and Mendillo, M. (2010). Orbital effects on Mercury’s escaping sodium exosphere. Icarus, 207, 9–16.
Shemansky, D. E., and Broadfoot, A. L. (1977). Interaction of the surfaces of the moon and Mercury with their exospheric atmospheres. Reviews of Geophysics and Space Physics, 15, 491–499.
Sieveka, E. M., and Johnson, R. E. (1984). Ejection of atoms and molecules from Io by plasma-ion impact. Astrophysical Journal, 287, 418–426.
Simon, S., Bagdonat, T., Motschmann, U., and Glassmeier, K.-H. (2006). Plasma envi- ronment of magnetized asteroids: a 3-d hybrid simulation study. Annales Geophysicae, 24, 407–414.
Siscoe, G., and Christopher, L. (1975). Variations in the solar wind stand-off distance at Mercury. Geophysical Research Letters, 2, 158–160.
Slavin, J. A., Acun ̃a, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., Gold, R. E., Ho, G. C., Korth, H., Krimigis, S. M., McNutt, R. L., Raines, J. M., Sarantos, M., Schriver, D., Solomon, S. C., Tr ́avn ́ıˇcek, P., and Zur- buchen, T. H. (2009). Messenger observations of magnetic reconnection in mercury’s magnetosphere. Science, 324, 606–610.
Slavin, J. A., Acun ̃a, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., Gold, R. E., Ho, G. C., Killen, R. M., Korth, H., Krimigis, S. M., McNutt, R. L., Nittler, L. R., Raines, J. M., Schriver, D., Solomon, S. C., Starr, R. D., Tr ́avn ́ıˇcek, P., and Zurbuchen, T. H. (2008). Mercury’s magnetosphere after MESSENGER’s first flyby. Science, 321, 85–89.
Smyth, W. H. (1979). Io’s sodium cloud - explanation of the east-west asymmetries. Astrophysical Journal, 234, 1148–1153.
Smyth, W. H. (1986). Nature and variability of Mercury’s sodium atmosphere. Nature, 323, 696–699.
Smyth, W. H., and Marconi, M. L. (1995). Theoretical overview and modeling of the sodium and potassium atmosphere of Mercury. Astrophysical Journal, 441, 839–864.
Sonett, C. P., and Colburn, D. S. (1968). The principle of solar wind induced planetary dynamos. Physics of the Earth and planetary interiors, 1, 326–346.
Sprague, A. L., Kozlowski, R. W. H., Hunten, D. M., Schneider, N. M., Domingue, D. L., Wells, W. K., Schmitt, W., and Fink, U. (1997). Distribution and abundance of sodium in Mercury’s atmosphere, 1985-1988. Icarus, 129, 506–527.
Tipler, P. A., and Llewellyn, R. A. (2002). Modern Physics. (4th ed.). 41 Madison Avenue, New York, NY 10010: W. H. Freeman and Company.
Tr ́avn ́ıˇcek, P., Hellinger, P., and Schriver, D. (2007). Structure of Mercury’s magneto- sphere for different pressure of the solar wind: three dimensional hybrid simulations. Geophysical Research Letters, 34, L05104.
Tr ́avn ́ıˇcek, P., Hellinger, P., Schriver, D., Herˇc ́ık, D., Slavin, J. A., and Anderson, B. J. (2009). Kinetic instabilities in Mercury’s magnetosphere: three-dimensional simulation results. Geophysical Research Letters, 36, L07104.
Vernazza, P., Brunetto, R., Strazzulla, G., Fulchignoni, M., Rochette, P., Meyer-Vernet, N., and Zouganelis, I. (2006). Asteroid colors: a novel tool for magnetic field detection? the case of Vesta. Astronomy and Astrophysics, 451, L43–L46.
Vervack, R. J., McClintock, W. E., Killen, R. M., Sprague, A. L., Anderson, B. J., Burger, M. H., Bradley, E. T., Mouawad, N., Solomon, S. C., and Izenberg, N. R. (2010). Mercury’s complex exosphere: results from MESSENGER’s third flyby. Sci- ence, 329, 672–675.
Wang, Y.-C., and Ip, W.-H. (2008). A surface thermal model and exospheric ballistic transport code of planet Mercury. Advances in Space Research, 42, 34–39.
Wang, Y.-C., and Ip, W.-H. (2011). Source dependency of exospheric sodium on Mer- cury. Icarus, 216, 387–402.
Wang, Y.-C., Mu ̈ller, J., Ip, W.-H., and Motschmann, U. (2011). A 3d hybrid simulation study of the electromagnetic field distributions in the lunar wake. Icarus, 216, 415– 425.
Wang, Y.-C., Mu ̈ller, J., Motschmann, U., and Ip, W.-H. (2010). A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus, 209, 46–52.
Wiens, R. C., Burnett, D. S., Calaway, W. F., Hansen, C. S., Lykke, K. R., and Pellin, M. J. (1997). Sputtering products of sodium sulfate: implications for Io’s surface and for sodium-bearing molecules in the Io torus. Icarus, 128, 386–397.
Wieser, M., Barabash, S., Futaana, Y., Holmstr ̈om, M., Bhardwaj, A., Sridharan, R., Dhanya, M. B., Schaufelberger, A., Wurz, P., and Asamura, K. (2010). First observa- tion of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms. Geophysical Research Letters, 37, L05103.
Wurz, P., and Lammer, H. (2003). Monte-Carlo simulation of Mercury’s exosphere. Icarus, 164, 1–13.
Yakshinskiy, B. V., and Madey, T. E. (1999). Photon-simulated desorption as a sub- stantial source of sodium in the lunar atmosphere. Nature, 400, 642–644.
Zurbuchen, T. H., Koehn, P., Fisk, L. A., Gombosi, T., Gloeckler, G., and Kabin, K. (2004). On the space environment of Mercury. Advances in Space Research, 33, 1884–1889.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2012-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明