博碩士論文 942401002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:34.232.62.209
姓名 陳慧錚(Huei Jeng)  查詢紙本館藏   畢業系所 數學系
論文名稱 正特徵值函數體上的逼近指數之研究
(Distribution of Diophantine approximation exponentsfor algebraic quantities in finite characteristic)
相關論文
★ 數論在密碼學上的應用★ a^n-b^n的原質因子,其中a,b為高斯整數
★ Group Representations on GL(2,F_q)★ Legendre的定理在Z[i]和Z[w]的情形
★ Diophantine approximation and the Markoff chain★ The average of the number of r-periodic points over a quadratic number field.
★ 週期為r之週期點個數的平均值★ 橢圓曲線上扭點的平均數
★ On some problem in Arithmetic Dynamical System and Diophantine Approximation in Positive Characteristic★ ZCm 的理想環生成元個數之上限
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 正特徵值函數體上的丟番圖逼近和有理數體以及零特徵值函數體上的丟番圖逼近不同, Mahler 舉出一個例子指出一個代數數逼近指數可以和它的擴張指數相同. Schmidt 和 Thakur 證明出, 給定任何一個介於 2和q+1的有理數m 我們都可以找到一組代數數使得它們的逼近指數等於m, 並且它的擴張指數比q+1小. 在此論文的第一部分中我們證明出了我們可以找出一組代數數使得它們的逼近指數等於m, 並且它的擴張指數等於q+1. 第二部分我們完整的描述了在
IA(q)的這個集合中的元素在區間 (2,q+1] 的逼近指數的分布. Thakur已經證明出在q小的時候大部分IA(q)的元素的逼近指數很接近2.
第三部分我們給出一些特殊代數數(由Carlitz 模來的) 的連分數公式以及逼近指數的計算. 第四部份我們給出了另一些特殊代數數(也是由Carlitz 模來的) 的逼近指數的上界.
摘要(英) In contrast to Roth’’s (Uchiyama’’s respectively) theorem that algebraic real numbers (algebraic power series in characteristic zero respectively) have Diophantine approximation exponents equal to $2$, Mahler had shown that Liouville bound is the best possible in finite characteristic. Schmidt and Thakur proved that given any rational number $mu$ between $2$ and $q+1$, where $q$ is a power of a prime $p$, there exists (explicitly given)
algebraic Laurent series $alpha$ in characteristic $p$, with their Diophantine approximation exponent equal to $mu$ and with degree of $alpha$ being at most $q+1$. We first refine this result by showing that degree of $alpha$ can be prescribed to be equal to $q+1$.
Next we describe how the exponents of $alpha$’’s are asymptotically distributed with respect to their heights in the case of algebraic elements of class IA for function
fields over finite fields. A result of Thakur says that for low values of $q$ most elements $alpha$ have exponents near $2$. We refine this result and give more precise descriptions of the distribution of the approximation exponents of such elements $alpha$ of Class IA. In the last chapter, we compute the continued fractions and approximation exponents of certain families
of elements related to Carlitz torsion.
關鍵字(中) ★ 丟番圖
★ 逼近指數
關鍵字(英) ★ Carlitz torsion
★ exponents
★ Diophantine approximation
論文目次 1 Introduction 1
1.1 Diophantine Approximation for Number Fields . . . . . . . . 1
1.2 Diophantine Approximation for Function Fields . . . . . . . . 3
1.3 Analogue of Thue's Theorem and Distribution of Approximation
Exponents . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Distribution of Approximation Exponents of Elements in Class
IA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . 9
2 Analogue of Thue's Theorem and The Class I, Class IA 11
2.1 Thue's Method . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.1 Di erential Method . . . . . . . . . . . . . . . . . . . 11
2.2 The Class I and Class IA . . . . . . . . . . . . . . . . . . . . 13
2.3 Results from W. Schmidt and D.Thakur . . . . . . . . . . . . 15
2.3.1 Continued Fractions and Exponents . . . . . . . . . . 15
2.3.2 Continued Fractions and Approximation Exponents of
Elements in Class IA . . . . . . . . . . . . . . . . . . . 16
2.4 Distribution of Exponents for Fixed Special Degrees . . . . . 17
3 Asymptotic Distribution of Exponents for Algebraic Ele-
ments in Class IA 2
3.1 Heights on IA(q) . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Distribution of Exponents of Elements in IA(q) in (2; q + 1] . 32
4 Approximation exponents of Carlitz torsion 57
4.1 Drinfeld Modules and Their Torsion . . . . . . . . . . . . . . 57
4.2 Continued Fractions and Linear Fractional
Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Continued Fractions and Approximation
Exponents of (q
參考文獻 [1] W. Buck and D. Robbins. The continued fraction expansion of an
algebraic power series satisfying a quartic equation, J. Number Theory,
50: 335-344, 1995.
[2] L. E. Baum and M. M. Sweet. Continued fractions of algebraic power
series in characteristic 2. Ann. of Math. (2), 103(3):593{610, 1976.
[3] L. E. Baum and M. M. Sweet. Badly approximable power series in
characteristic 2. Ann. of Math. (2), 105(3):573{580, 1977.
[4] B. de Mathan. Approximations Diophantiennes dans un corps local.
Bull. Soc. Math. France Suppl. M em., 21:93, 1970.
[5] B. de Mathan. Approximation exponents for algebraic functions in
positive characteristic. Acta Arith., 60(4):359-370, 1992.
[6] B. de Mathan. Simultaneous Diophantine approximation for algebraic
functions in positive characteristic. Monatsh. Math. 111 (1991), no. 3,
187-193.
[7] B. de Mathan and O. Teuli e Problemes diophantiens simultanes.
(French) [Simultaneous Diophantine approximations] Monatsh. Math.
143 (2004), no. 3, 229-245.
[8] Neal Koblitz. p-adic numbers, p-adic analysis, and zeta-functions Graduate
Texts in Mathematics (v. 58)
[9] Kolchin E. Rational approximation to solutions of algebraic di erential
equations. Proc Amer Math Soc 10: 238244, 1959
[10] A. Lasjaunias , B. de Mathan Thue's theorem in positive characteristic.
J Reine Angew Math 473: 195-206, 1996.
[11] A. Lasjaunias. A survey of Diophantine approximation in elds of power
series. Monatsh. Math., 130(3):211{229, 2000.
[12] A. Lasjaunias, W. Bluher Hyperquadratic power series of degree four
Acta Arithmetica, 124, 257-268, 2006.
[13] A. Lasjaunias. Continued fractions for hyperquadratic powerseries over
a nite eld. Finite elds and their applications, 14, 329-350, 2008.
[14] K. Mahler, On a theorem of Liouville in elds of positive charactersitic,
Canad. J. Math. 1 (1949), 397-400.
[15] W.H.Mills and David P. Robbins Continued fractions for certain algebraic
power series. J. Number Theory, 23: 388{404, 1986.
[16] C. Osgood. An e ective lower bound on the Diophantine approximation"
of algebraic functions by rational functions. Mathematika 20:
415, 1973
[17] C. Osgood. E ective bounds on the Diophantine approximation" of algebraic
functions over elds of arbitrary characteristic and applications
to di erential equations. Indag Math 37: 105-119, 1975.
[18] Michael Rosen. Number theory in function elds. Springer-Verlag New
York Berlin Heidelberg, Inc. 2002.
[19] K. F. Roth. Rational approximations to algebraic numbers. Mathe-
matika, 2:1{20; corrigendum, 168, 1955.
[20] W. M. Schmidt. On Osgood's e ective Thue theorem for algebraic
functions. Comm Pure Applied Math 29: 759773,1976
[21] W. M. Schmidt. On continued fractions and Diophantine approximation
in power series elds. Acta Arith., 95(2):139{166, 2000.
[22] D. S. Thakur. Diophantine approximation exponents and continued
fractions for algebraic power series. J. Number Theory, 79(2):284{291,
1999.
[23] D. S. Thakur. Diophantine approximation and transcendence in -
nite characteristic In Diophantine Equations, Ed. N. Saradha, 265-278
(2008) Pub. for Tata Institute of Fundamental Research by Narosa Pub.
[24] D. S. Thakur. Function eld arithmetic. World Scienti c Publishing
Co. Inc., River Edge, NJ, 2004.
[25] D. S. Thakur. Approximation exponents for function elds Analytic
Number Theory- Essays in honor of Klaus Roth, Ed. W. Chen, T. Gowers,
H. Halberstram, W. Schmidt, R. Vaughn, Cambridge U. Press,
Cambridge, 421-435, 2009.
[26] A. Thue Om en generel i store hele tal ul sbar ligning. Videnskabs
Selskabets Skrifter 7: 1-15, 1908
[27] S. Uchiyama. On the Thue-Siegel-Roth theorem. III. Proc. Japan Acad.,
36:1{2, 1960.
[28] Voloch, J. F. Diophantine Approximation in Chracteristic p . Monatsh.
Math. 119 (1995), 321-325.
指導教授 夏良忠(Liang-Chung Hsia) 審核日期 2011-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明