博碩士論文 942402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.231.228.109
姓名 達斯(Subrata-Kumar Das)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用地面與空載光達進行熱帶高空卷雲之研究
(A Study of the High Altitude Tropical Cirrus Clouds using Ground and Space based Lidar)
相關論文
★ 氧氣在105-190nm間高激發態之光譜研究★ H2O光解產生OH(A2Σ+)振動態之研究
★ 氮氣光譜之研究Ⅰ:C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 丙炔與丙二烯吸收光譜之研究
★ O2(b1Sg+)氣輝的全球分布與變化★ 以雷射雷達量測對流層頂之溫度、高度分布 -與無線電探空儀量測資料之比較、分析
★ 氮氣光譜之研究Ⅱ: C3Πu-X1Σg+及a1Πg- X1Σg+系統★ 一氧化氮激態的消光及螢光激發光譜之研究
★ 一氧化氮激態D2Σ+螢光之消激研究★ 一氧化氮激態A2Σ+螢光之消激研究
★ 中壢上空10–30公里間的卷雲、氣膠、溫度的測量與光散射性質之研究★ 低對流層氣膠之光達量測
★ 對流層氣膠光學性質之研究★ 氮氣分子在45-100 nm之光吸收、光離子化、光解離
★ 利用光達技術探測氣膠與水汽之作用★ N2O在60-120nm之吸收光譜、光游離與螢光激發光譜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 卷雲在大氣輻射平衡中扮演相當重要的角色,並且卷雲也是氣候系統中一個不確定因子。這也是為何氣候模式在不同地理位置必須正確地參數化卷雲之物理性質。光達的時間和空間解析度已被證實對於量測熱帶卷雲和其結構是相當有用之工具之一。因此我們在中壢地區(24.58 oN, 121.10 oE, 167 m MSL)利用偏振光達對卷雲進行10年(1999-2009)之觀測。 本研究以長期觀測資料綜合討論卷雲之特性包括卷雲形成與消散的動力和熱力學因素。我們藉由消偏振比值、lidar ratio、消光係數和光學厚度等參數將卷雲依其季節、幾何、光學和熱等特性表示。卷雲出現在夏季之頻率相較於冬季高,為了瞭解卷雲的幾何和光學特性與溫度之關連,我們利用板橋站之探空氣球每日兩次的溫度資料進行分析討論。也利用光達測量卷雲冰晶的降落速度並結合理論用以估算卷雲冰晶的有效大小。光達所推導的卷雲冰晶粒子之有效大小和光學厚度等與雲中心溫度進行分析探討。我們發現當溫度較低時出現較小的冰晶粒子和較小的光學厚度,這清楚說明雲-輻射間的交互作用。此外我們也想瞭解在對流層頂附近大尺度擾動對卷雲的形成和消散所造成之影響。這些波的擾動可調節對流層頂附近的溫度,並且在這非常低溫的區域也觀測到卷雲的沈降。
此外,也利用CALIPSO, Aura MLS and NCEP/NCAR 資料研究熱帶對流層上層水汽的重新分佈在熱帶卷雲形成過程中所扮演的角色。研究結果說明對流層上層水汽由強對流區域到印度半島區域的重新分佈導致熱帶卷雲的形成。並且和亞洲夏季季風有關的熱帶東風氣流(tropical easterly jet)會造成上層水汽的水平傳輸。這些結果讓我們瞭解熱帶東風氣流在對流層上層水汽的重新分佈和熱帶卷雲的形成過程中所扮演的角色。
摘要(英) Cirrus clouds play a major role in the global radiation budget and consider as one of the uncertain components in the climate system. This calls for accurate parameterizations of cirrus clouds physical properties in different geographic locations, which are highly essential for climate modelling. The high temporal and spatial resolutions of lidar have proven to be valuable remote sensing tools to monitor the structure and dynamical processes of upper tropical cirrus clouds. At this juncture, by using a polarization diversity lidar (Nd:YAG, 532 nm), the cirrus clouds have been observed over Chung-Li (24.58 oN, 121.10 oE, 167 m MSL), Taiwan over a period from 1999 to 2009. This work synthesis the characteristics of cirrus clouds with a long term data base. It also focuses on the dynamical and the thermodynamical factors that control their formation and dissipation. Cirrus clouds were characterized in terms of the seasonal, geometrical, optical (viz., depolarization ratio, lidar ratio, extinction coefficient, and optical depth), and thermal properties. The occurrences of cirrus cloud are more in the summer and comparatively less in the winter. In order to characterize the temperature dependence of the optical and geometrical properties of cirrus clouds, we have utilized the temperature information from the radiosonde launched twice daily from the nearby lidar site (nearly 30 km).
A theoretical estimation of an effective size of ice crystals in cirrus clouds using fall velocity derived from the lidar measurements has also been attempted. The lidar derived mean effective size of cirrus crystals are also parameterized in terms of the cloud mid-height temperature as well as optical depth. It is found that the size of ice crystals becomes small with the decrease in temperature. This will reflect in the decrease in optical depth, which clearly revealed the manifestation of cloud-radiation interaction. An attempt has been made for the first time to understand the impact of planetary-scale disturbances on the formation and disappearance of cirrus cloud in the vicinity of tropopause (VOT). These wave disturbances greatly modulate the temperature in the VOT and during the cold phase of anomalies, the descending cirrus clouds are observed.
In addition, the role of redistribution of the tropical upper tropospheric humidity, which supports the formation of the tropical cirrus clouds, has been investigated by using the CALIPSO, Aura-MLS and NCEP/NCAR reanalysis data. Results show that the redistribution of upper tropospheric humidity from a highly convective zone to the Indian peninsular region leads to the formation of the tropical cirrus. Advection of upper layer humidity is caused by the tropical easterly jet (TEJ) associated with the Asian Summer Monsoon (ASM). Thus, the results bring out for the first time, the role of TEJ in redistribution of the upper tropospheric humidity and consequently, in the formation of tropical cirrus.
關鍵字(中) ★ 東風氣流
★ CALIPSO
★ 卷雲
★ 光達
關鍵字(英) ★ TEJ
★ CALIPSO
★ Lidar
★ Cirrus clouds
論文目次 TABLE OF CONTENTS
Abstract (Chinese) i
Abstract (English) ii
Acknowledgements iv
Table of Contents vii
List of Figure ix
List of Tables xv
List of Symbols xvi
List of Abbreviations xvii
Chapter-1 : Introduction 1
1.1 Background 2
1.2 Earth’s Atmosphere and its vertical structure 3
1.3 Clouds and Earth’s Energy budget 6
1.4 Clouds 7
1.4.1 Formation of clouds 7
1.4.2 Classification of clouds 9
1.5 Ice forming nuclei 15
1.6 Ice formation process in cirrus 16
1.7 An overview of physical and dynamical properties of tropical cirrus 18
1.8 Remote sensing of cirrus clouds by using Lidar 24
1.9 Review of Lidar studies on tropical cirrus 25
1.10 Motivation 31
1.11 Scope and scientific objective 32
1.12 Thesis layout 33
Chapter-2 : Experimental Techniques and Data Analysis 35
2.1 Introduction 36
2.2 LIDAR system in Chung-Li 37
2.2.1a Transmitter 38
2.2.1b Receiver 38
2.2.1c Signal processing 39
2.2.2 Lidar equation 41
2.2.3 Lidar inversion algorithm 43
2.2.4 Estimation of various clouds parameter 44
2.2.5 Lidar calibration for depolarization measurement 51
2.2.6 Error involved in the lidar measurements 54
2.3 CALIOP onboard CALIPSO 56
2.3.1 CALIOP instrument characteristics 57
2.3.2 Data format and analysis 58
2.4 Other satellite data 59
2.4.1 MLS onboard AURA 59
2.4.2 NCEP/NCAR reanalysis 60
2.5 Radiosonde data 61
Chapter-3 : Physical and Optical Properties of Cirrus Clouds 62
3.1 Introduction 63
3.2 Data analysis 65
3.3 Results and discussion 66
3.3.1 Macrophysical statistics of cirrus 66
3.3.1a Cirrus occurrence for different years and months 66
3.3.1b Cirrus occurrence with temperature 67
3.3.1c Geometrical thickness 69
3.3.2 Microphysical statistics of cirrus 70
3.3.2a Effective lidar ratio 70
3.3.2b Cirrus extinction and optical depth 73
3.3.2c Linear depolarization ratio 74
3.3.3 Radiative properties of cirrus 78
3.3.3a Climate sensitivity studies on cirrus 78
3.3.3b Calculation of infrared forcing by cirrus 80
3.4 Concluding remarks 81
Chapter-4 : Estimation/Characterization of Cirrus Ice Crystals Effective Size 83
4.1 Introduction 84
4.2 Methodology and data analysis 86
4.2.1 Identification of cirrus clouds using lidar 86
4.2.2 Calculation of cirrus optical depth using lidar 87
4.2.3 Estimation of crystals size using lidar 87
4.2.4 Retrieval error and uncertainties in the calculations 89
4.3 Results and discussion 91
4.4 Conclusions 99
Chapter-5 : Influence of Wave Disturbance in the Formation of Cirrus in the Vicinity of Tropopause 100
5.1 Introduction 101
5.2 Experimental method and data analysis 103
5.3 Results and Discussion 103
5.4 Summary and concluding remarks 115
Chapter-6 : Influence of Tropical Easterly jet on Upper Tropospheric Cirrus 117
6.1 Introduction 118
6.2 Data analysis 121
6.3 Results and discussion 122
6.4 Conclusions 139
Chapter-7 : Summary and Future Projections 140
7.1 Summary 141
7.2 Future work 144
References 147
參考文獻 Ackerman, T. P., K. N. Liou, F. P. J. Valero, and L. Pfister (1988), Heating rates in tropical anvils, J. Atmos. Sci., 45, 1606–1623.
Ahrens, C. D. (2003), Meteorology Today: An Introduction to Weather, Climate, and the Environment. Brooks & Cole, Unites States.
Ansmann, A., U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis (1992), Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Opt., 31, 7113-7131.
Ansmann, A (2002), Molecular-backscatter lidar profiling of the volume scattering coefficients in cirrus, in Cirrus, edited by D. Lynch et al., pp. 197 – 210, Oxford Univ. Press, New York.
Baker, B. M. (1997), Cloud microphysics and climate, Science, 276, 1072-1078.
Barry, R. G. and R. G. Chorley (1998), Atmosphere, Weather and Climate, 7th ed., Routlege, London.
Basist, A. N., and M. Chelliah (1997), Comparison of tropospheric temperature derived from the NCEP/NCAR reanalysis, NCEP operational analysis, and the microwave sounding unit, Bull. Amer. Meteor. Soc., 78, 1431-1447.
Bhavani, K. Y., V. Sivakumar, A. R. Jain, and P. B. Rao (2001), MST radar and polarization lidar observations of tropical cirrus, Ann. Geophys., 19, 873–883.
Biele, J., G. Beyerle, and G. Baumgarten (2000), Polarization lidar: corrections of instrumental effects, Opt. Express, 7, 427–435.
Boehm, M., and J. Verlinde (2000a), Stratospheric influence on upper tropospheric tropical cirrus, Geophys. Res. Lett., 27 (19), 3209–3212.
Boehm, M. T. and J. Verlinde (2000b), Tropical Cirrus Maintenance, 10th ARM Science Team Meeting, March 13 – 17, San Antonio, Texas.
Bodhaine, B. A., B. N. Wood, E. G. Dutton, and J. R. Slusser (1999), On Rayleigh optical depth calculations, J. Atmos. Ocean. Tech., 16, 1854–1861.
Brown, P. R. A, A. J. Illingworth, A. J. Heymsfield, G. M. McFarquhar, K. A. Browning, and M. Gosset (1995), The role of Spaceborne Millimeter-Wave Radar in the global monitoring of Ice cloud, J. Appl. Meteor., 34, 2346-2366.
Bureau, C. R. (1946), La Meteorologie, 3, 292-301.
Cadet, B., L. Goldfarb, D. Faduilhe, S. Baldy, V. Giraud, P. Keckhut, and A. Réchou (2003), A sub-tropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set, Geophys. Res. Lett., 30, 1130, doi:10.1029/2002GL016342.
Charlock, T. P. (1982), Cloud optical feedback and climate stability in a radiative-convective model, Tellus, 34, 245-254.
Chen, J.-P., G. M. McFarquhar, A. J. Heymsfield, and V. Ramanathan (1997), A modeling and observational study of the detailed microphysical structure of tropical cirrus anvils, J. Geophys. Res., 102(D6), 6637–6653.
Chen, W. N., C. W. Chiang, and J. B. Nee (2002), Lidar ratio and depolarization ratio for cirrus clouds, Appl. Opt., 41, 6470-6476.
Chen, W. N. (2002), The measurements and scattering propertites of aerosol, cirrus, and temperature between 10-30 km above Chung-li, PhD thesis, National Central University, Chungli, Taiwan.
Chiang, C. W., W. N. Chen, W. A. Liang, S. K. Das, and J. B. Nee (2007), Optical properties of tropospheric aerosols based on measurements of lidar, sun-photometer, and visibility at Chung-Li (25.1N, 121.1E), Atmos. Environ., 41, 4128-4137.
Clark, H. L. (2005), Longitudinal variability of water vapor and cirrus in the tropical tropopause layer, J. Geophys. Res., 110, D07107, doi:10.1029/2004JD004943.
Comstock, J. M., and K. Sassen (2001), Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements, J. Atmos. Ocean. Tech., 18, 1658-1673.
Comstock, J. M., T. P. Ackerman, and G. G. Mace (2002), Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts, J. Geophys. Res., 107(D23), 4714, doi:10.1029/2002JD002203.
Corti, T., B. P. Luo, T. Peter, H. Voemel, and Q. Fu (2005), Mean radiative energy balance and vertical mass fluxes in the equatorial upper troposphere and lower stratosphere, Geophys. Res. Lett., 32, L06802, doi:10.1029/2004GL021889.
Das, S. K., C. W. Chiang, and J. B. Nee (2009), Characteristics of cirrus cloud and its radiative properties based on lidar observation Chung-Li, Taiwan, Atmos. Res., 93, 723-735.
Das, S. S., K. K. Kumar, and K. N. Uma (2010a), MST radar investigation on inertia-gravity waves associated with tropical depression in the upper troposphere and lower stratosphere over Gadanki (13.5oN, 79.2oE), 72, 1184-1194, J. Atmos. Solar-Terr. Phys., doi:10.1016/j.jastp.2010.07.016.
Das, S. K., J. B. Nee, and C. W. Chiang (2010b), A LiDAR study of the effective size of cirrus ice crystals over Chung-Li, Taiwan, J. Atmos. Solar-Terr. Phys., doi:10.1016/j.jastp.2010.03.024, 72, 781-788.
Del Genio, A. D., and W. Kovari (2002), Climatic properties of tropical precipitating convection under varying environmental conditions, J. Clim., 15, 2597– 2615.
De Mott, P. (2002), Laboratory studies of cirrus cloud processes, in Cirrus, edited by D. Lynch et al., pp. 102–135, Oxford Univ. Press, New York.
Deng, M., and G. G. Mace (2008), Cirrus cloud microphysical properties and air motion statistics using cloud radar Doppler moments: Water content, particle size, and sedimentation relationships, Geophys. Res. Lett., 35, L17808, doi:10.1029/2008GL035054.
Dessler, A. E., S. P. Palm, and J. D. Spinhirne (2006), Tropical cloud-top height distributions revealed by the Ice, Cloud, and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS), J. Geophys. Res., 111, D12215, doi:10.1029/2005JD006705.
Dowling, D. R., and L. F. Radke (1990), A summary of the physical properties of cirrus clouds, J. Appl. Meteorol., 29, 970– 978.
Dunkerton, T. J. (1995), Evidence of meridional motion in the summer lower stratosphere adjacent to monsoon regions, J. Geophys. Res., 100, 16,675–16,688.
Eguchi, N., and M. Shiotani (2004), Intraseasonal variations of water vapor and cirrus clouds in the tropical upper troposphere, J. Geophys. Res., 109, D12106, doi:10.1029/2003JD004314.
Eguchi, N., and K. Kodera (2007), Impact of the 2002, Southern Hemisphere,
stratospheric warming on the tropical cirrus clouds and convective activity,
Geophys. Res. Lett., 34, L05819, doi:10.1029/2006GL028744.
Eguchi, N., T. Yokota, and G. Inoue (2007), Characteristics of cirrus clouds from ICESat/GLAS observations, Geophys. Res. Lett., 34, L09810, doi:10.1029/2007GL029529.
Eixmann, R., D. H. W. Peters, C. Zṻlicke, M. Gerding and A. Dȫrnbrack (2010), On the upper tropospheric formation and occurrence of high and thin cirrus clouds during anticyclonic poleward Rossby wave breaking events, Tellus, 62A, 228-242.
Ellingson, R. G., D. J. Yanuk, and A. Gruber (1989), Effects of the choice of meteorological data on a radiation model simulation of the NOAA technique for estimating outgoing longwave radiation from satellite radiance observation, J. Climate Appl. Meteorol., 31, 761–765.
Eloranta, E. W. (1998), Practical model for the calculation of multiply scattered lidar returns, Appl. Opt., 37, 2464-2472.
Fernald, F. G. (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt., 23, 652-653.
Fiocco, G., and L. D. Smullin (1963), Detection of Scattering Layers in the Upper Atmosphere (60–140 km) by Optical Radar, Nature, 199, 1275-1276.
Field, et al. (2001), Ice nucleation in orographic wave clouds: Measurements made during INTACC, Quart. J. Royal Meteorol. Soc., 127, 1493–1512.
Foufoula-Georgious, E., and P. Kumar (Eds) (1995), Wavelets in Geophysics, Elsevier, New York, 373 pp.
Francis, P., P. Hignett, and A. Macke (1998), The retrieval of cirrus cloud properties from aircraft multi-spectral reflectance measurements during EUCREX ’93, Quart. J. Roy. Meteor. Soc., 124, 1273–1291.
Francis, P. N., J. S. Foot, and A. J. Baran (1999), Aircraft measurements of the solar and infrared radiative properties of cirrus and their dependence on ice crystal shape, J. Geophys. Res., 104(D24), 31685–31695.
Fu, Q., and K. N. Liou (1993), Parameterization of the Radiative Properties of Cirrus Clouds, J. Atmos. Sci., 50, 2008-2025.
Fu, Q., S. K. Krueger, and K. N. Liou (1995), Interactions between radiation and convection in simulated tropical cloud clusters, J. Atmos. Sci., 52, 1310–1328.
Fujiwara, M., K. Kita, and T. Ogawa (1998), Stratosphere-troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes, J. Geophys. Res., 103, 19,173– 19,182.
Fujiwara, M., et al. (2009), Cirrus observations in the tropical tropopause layer over the Western Pacific, J. Geophys. Res., 114 (D09304), doi:10.1029/2008JD011,040.
Gai, M., M. Gurioli, P. Bruscaglioni, A. Ismaelli, and G. Zaccanti (1996), Laboratory simulations of lidar returns from clouds, Appl. Opt., 35, 5435-5442.
Garrett, T. J., H. Gerber, D. G. Baumgardner, C. H. Twohy, and C. H. Weinstock (2003), Small, highly reflective ice crystals in low-latitude cirrus, Geophys. Res. Lett., 30(21), 2132, doi:10.1029/2003GL018153.
Gayet, J. F., G. Febvre, G. Brogniez, H. Chepfer, W. Renger, and P. Wendling (1996),
Microphysical and optical properties of cirrus and contrails: cloud field study on 13 October 1989, J. Atmos. Sci., 53, 126–138.
Gayet, J. F., J. Ovarlez, V. Shcherbakov, J. Strom, U. Schumann, A. Minikin, F. Auriol, A. Petzold, and M. Monier (2004), Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment, J. Geophys. Res., 109, doi:10.1029/2004JD004 803.
Gettelman, A., W. J. Randel, F. Wu, and S. T. Massie (2002), Transport of water vapor in the tropical tropopause layer, Geophys. Res. Lett., 29(1), 1009, doi:10.1029/2001GL013818.
Giannakaki, E., D. S. Balis, V. Amiridis, and S. Kazadzis (2007), Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station, Atmos. Chem. Phys., 7, 5519–5530.
Grund, C. J., and E. W. Eloranta(1990), The 27– 28 October 1986 FIRE IFO cirrus case study: Cloud optical properties determined by high spectral resolution lidar, Mon. Weather Rev., 118, 2344–2355.
Gu, Y., and K. N. Liou (2006), Cirrus cloud horizontal and vertical inhomogeneity effects in a GCM, Meteor. Atmos. Phys., 91, 223-235, doi:10.1007/s00703-004-0099-2.
Haladay, T., and G. Stephens (2009), Characteristics of tropical thin cirrus clouds deduced from joint CloudSat and CALIPSO observations, J. Geophys. Res., 114, D00A25, doi:10.1029/2008JD010675.
Hallett, J., W. P. Arnott, M. P. Bailey, and J. T. Hallett (2002), Ice crystals in cirrus, in Cirrus, edited by D. Lynch et al., pp. 168-196, Oxford Univ. Press, New York.
Hall, W. D., and H. R. Pruppacher (1976), The survival of ice particles falling from cirrus clouds in subsaturated air, J. Atmos. Sci., 33, 1995–2006.
Hartmann, D. L., V. Ramanathan, A. Berroir, and G. E. Hunt (1986), Earth radiation budget data and climate research, Rev. Geophys., 24, 439-468.
Hartmann, D. L., B. M. E. Ockert, and M. L. Michelsen (1992), The effect of cloud type on Earth's energy balance: global analysis, J. Clim., 5, 1281-1304.
Hartmann, D. L. (1994), Global Physical Climatalogy, Academia Press, San Diego, CA.
Hartmann, D. L., J. R. Holton, and Q. Fu (2001), The heat balance of the tropical tropopause, cirrus, and stratospheric dehydration, Geophys. Res. Lett., 28(10), 1969–1972.
Hastenrath, S. (1991), Regional circulation systems, in Climate dynamics of the tropics, pp. 114-218, Kluwer Academic Publishers, Netherlands.
Haynes, J. M., and G. L. Stephens (2002) , A Composite and Microphysical Study of Jet
Stream Cirrus Over the ARM Site, Twelfth ARM Science Team Meeting
Proceedings, St. Petersburg, Florida.
Heymsfield, A. J. (1972), Ice crystal terminal velocities, J. Atmos. Sci., 29, 1348–1357.
Heymsfield, A. J., and L. J. Jahnsen (1974), Microstructure of tropopause cirrus layers, Proc. Sixth Conf. on Aerospace and Aeronautical Meteorology, El Paso, TX, Am. Meteorol. Soc., Boston, Mass, pp. 43 – 48.
Heymsfield, A. J. and C. M. R. Platt (1984), A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content, J. Atmos. Sci., 41, 846– 855.
Heymsfield, A. J., and L. J. Donner (1990), A scheme for parameterizing ice cloud water content in general circulation models, J. Atmos. Sci., 47, 1865–1877.
Heymsfield, A. J. and L. M. Miloshevich (1995), Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE II, J. Atmos. Sci., 52, 4302-4326.
Heymsfield, A. J. and G. M. McFarquhar (1996), High albedos of cirrus in the tropical Pacific warm pool: Microphysical interpretations from CEPEX and from Kwajalein, Marshall Islands, J. Atmos. Sci., 53, 2424-2450.
Heymsfield, A. J., and J. Iaquinta (2000), Cirrus crystal terminal velocities, J. Atmos. Sci., 57, 916–938.
Heymsfield, A. J., and G. M. McFarquhar (2002), Mid-latitude and tropical cirrus: Microphysical properties, in Cirrus, edited by D. Lynch et al., pp. 78 – 101, Oxford Univ. Press, New York.
Heymsfield, A. J., A. Bansemer, P. R. Field, S. L. Durden, J. L. Stith, J. E. Dye, W. Hall, and C. A. Grainger (2002), Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns, J. Atmos. Sci., 59, 3457– 3491.
Heymsfield, A. J., and L. M. Miloshevich (2003), Parameterizations for the Cross-Sectional Area and Extinction of Cirrus and Stratiform Ice Cloud Particles, J. Atmos. Sci., 60, 936–956.
Heymsfield, A. J. (2003), Properties of tropical and midlatitude ice cloud particle ensembles. part I: median mass diameters and terminal velocities, J. Atmos. Sci., 60, 2573–2591.
Hogan, R. (2006), Fast approximate calculation of multiply scattered lidar returns, Appl. Opt., 45, 5984–5992.
Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister (1995), Stratosphere-troposphere exchange, Res. Geophys., 33, 403–439.
Holton, J. R., and A. Gettelman (2001), Horizontal transport and the dehydration of the stratosphere, Geophys. Res. Lett., 28, 2799–2802.
Houghton, J. T. (2001), Intergovernmental panel on climate change (IPCC), climate change 2001: the scientific basis, Cambridge University Press.
Houze, R. A. Jr. (1993), Cloud Dynamics, Academic Press, Inc. California, USA.
Hu, Y., and K. Stamnes (2000), Climate sensitivity to cloud optical properties, Tellus, 52B, 81-93.
Immler, F., and O. Schrems (2002), Determination of tropical cirrus properties by simultaneous LIDAR and radiosonde measurements, Geophys. Res. Lett., 29(23), 2090, doi:10.1029/2002GL015076.
Immler, F., K. Kr¨uger, M. Fujiwara, G. Verver, M. Rex, and O. Schrems (2008), Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause, Atmos. Chem. Phys., 8, 4019–4026.
Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, United Kingdom and New York, NY, USA.
Isono, K., M. Komobayasi and A. Ono (1959), The nature and origin of ice nuclei in the atmosphere, J. Meteor. Soc. Japan, 27, 211-233.
Iwasaki, S., Y. Tsushima, R. Shirooka, M. Katsumata, K. Yoneyama, I. Matsui, A. Shimizu, N. Sugimoto, A. Kamei, H. Kuroiwa, and H. Kumagai (2004), Subvisible cirrus cloud observation using a 1064 nm lidar, a 95 GHz cloud radar and radiosondes in the warm pool region, Geophys. Res. Lett., 31, doi:10.1029/2003GL019377.
Jain, A. R, T. K. Mandal, V. R. Rao, V. Panwar, S. S. Das, and P. Kumar (2010), Influence of monsoon associated mesoscale convection systems on the tropical tropopause region, Ann. Geophys., 28, 927-940.
James, R., M. Bonazzola, B. Legras, K. Surbled, and S. Fueglistaler (2008), Water vapor transport and dehydration above convective outflow during Asian monsoon, Geophys. Res. Lett., 35, L20810, doi:10.1029/2008GL035441.
Jayaweera, K. O. L. F., and R. E. Cottis (1969), Fall velocities of plate-like and columnar ice crystal, Quart. J. Roy. Meteor. Soc., 95, 703-709.
Jensen, E. J., O. B. Toon, H. B. Selkirk, J. D. Spinhirne, and M. A. Schoeberl (1996), On the formation and persistence of subvisible cirrus clouds near the tropical tropopause, J. Geophys. Res., 101(D16), 21361– 21375.
Jensen, E. J., L. Pfister, A. S. Ackerman, A. Tabazadeh, and O. B. Toon (2001), A conceptual model of the dehydration of air due to freeze drying by optically thin, laminar cirrus rising slowly across the tropical tropopause, J. Geophys. Res., 106, 17 237–17 252.
Jensen, E., and L. Pfister (2004), Transport and freeze drying in the tropical tropopause layer, J. Geophys. Res., 109 (D02207), 10.1029/2003JD004,022.
Jensen, E., D. Starr, and O. B. Toon (2004), Mission investigates tropical cirrus clouds, Eos, Trans. Amer. Geophys. Union, 85, 45–50.
Kalesse, H (2009), Influence of Ice Crystal Habit and Cirrus Spatial Inhomogeneities on the Retrieval of Cirrus Optical Thickness and Effective Radius, PhD thesis, Universit¨at Mainz, Germany.
Kalnay, E., Coauthors (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Amer. Meteor. Soc . , 77, 437–471.
Kärcher, B., and U. Lohmann (2002), A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols, J. Geophys. Res., 107(D2), 4010, doi:10.1029/2001JD000470.
Karcher, B., and J. Strom (2003), The roles of dynamical variability and aerosols in cirrus cloud formation, Atmos. Chem. Phys., 3, 823-838.
Khvorostyanov, V. I., and K. Sassen (2002), Microphysical processes in cirrus and their impact on radiation: A mesoscale modeling perspective, in Cirrus, edited by D. Lynch et al., pp. 397–432, Oxford Univ. Press, New York.
Kim, S. W., S. Berthier, J. C. Raut, P. Chazette, F. Dulac and S. C. Yoon (2008), Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea, Atmos. Chem. Phys., 8, 3705–3720.
Koteswaram, P. (1958), The easterly jet stream in the tropics, Tellus, X: 43–57.
Kuang, Z., and C. S. Bretherton (2004), Convective influence on the heat balance of the tropical tropopause layer: A cloud-resolving model study, J. Atmos. Sci., 61, 2919–2927.
Lamquin, N., C. J. Stubenrauch, and J. Pelon (2008), Upper tropospheric humidity and cirrus geometrical and optical thickness: relationships inferred from one year of collocated AIRS-CALIPSO data, J. Geophys. Res., 113, D00A08, doi: 10.1029/2008JD010012.
Lee, S.-H., et al. (2004), New particle formation observed in the tropical/subtropical cirrus clouds, J. Geophys. Res., 109, D20209, doi:10.1029/2004JD005033.
Liebmann, B., and C. A. Smith (1996), Description of a complete (interpolated) outgoing longwave dataset, Bull. Am. Meteorol. Soc., 77, 1275-1277.
Liou, K. N. (1986), Influence of cirrus clouds on weather and climate processes: a global perspective, Mon. Weather Rev., 114, 1167–1197.
Liou, K. N. (1992), Radiation and Cloud Processes in the Atmosphere, Oxford Univ. Press, New York.
Liou, K. N. (2005), Cirrus clouds and climate, The McGraw Hill Companies.
Lin, C. I. (1997), Microphysics studies of cirrus cloud with lidar, MS thesis, National Central University, Chungli, Taiwan.
Lin, B., K.-M. Xu, P. Minnis, B. A. Wielicki, Y. Hu, L. Chambers, T.-F. Fan, and W. Sun (2007), Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations, Geophys. Res. Lett., 34, L14804, doi:10.1029/2007GL029768.
Lindzen, R. S., M.-D. Chou, and A. Hou (2001), Does the Earth have an adaptive infrared iris?, Bull. Am. Meteorol. Soc., 82, 417– 432.
Livesey, N. J., et al. (2007), Earth Observing Systems (EOS) Microwave Limb Sounder (MLS) Version 2.2 level 2 data quality and description document, version 2.2 _ 1.0a, Jet Propulsion Laboratory.
Luo, Z., and W. B. Rossow (2004), Characterizing tropical cirrus life cycle, evolution and interaction with upper tropospheric water vapor using Lagrangian trajectory analysis of satellite observations, J. Clim., 17, 4541– 4563.
Lutgens, F. K., and E. J. Tarbuck (1995), The Atmosphere: And Introduction to Meteorology, 6th ed., Prentice-Hall, Inc., New Jersy.
Lynch, D. K. (2002), Cirrus: A History and Definition, in Cirrus, edited by D. K. Lynch et al., pp. 3– 10, Oxford Univ. Press, New York.
Mace, G. G., M. Deng, B. Soden, and E. Zipser (2006), Association of tropical cirrus in the 10–15-km layer with deep convective sources: An observational study combining millimeter radar data and satellite-derived trajectories, J. Atmos. Sci., 63, 480–503.
Magono, C., and C. V. Lee (1966), Meteorological classification of natural snow crystals, J. of the Faculty of Sci., Hokkaido University, 2, 321–362.
Maiman, T. H. (1960), Stimulated optical emission in ruby, Nature, 187, 493-494.
Massie, S., A. Gettelman, and W. Randel (2002), Distribution of tropical cirrus in relation to convection, J. Geophys. Res., 107(D21), 4591, doi:10.1029/2001JD001293.
Mather, J. H., T. P. Ackerman, M. P. Jensen, and W. E. Clements (1998), Characterisation of the atmospheric state and the surface radiation budget at the tropical western Pacific ARM site, Geophys. Res. Lett., 25, 4513-4516.
Matrosov, S. Y., and A. J. Heymsfield (2000), Use of Doppler radar to assess ice cloud particle fall velocity-size relations for remote sensing and climate studies, J. Geophys. Res., 105, 22 427–22 436.
McClung, F. J., and R. W. Hellwarth (1962), Giant Optical Pulsations from Ruby, J. Appl. Phys., 33, 828.
McFarquhar, G. and A. J. Heymsfield (1996), Microphysical characteristics of three anvils sampled during the central equatorial pacific experiment, J. Atmos. Sci., 53, 2401–2423.
McFarquhar, G. M. and A. J. Heymsfield (1997), Parameterization of tropical cirrus ice crystal size distributions and implications for radiative transfer: Results from CEPEX, J. Atmos. Sci., 54, 2187–2200.
McFarquhar, G. M., A. J. Heymsfield, J. D. Spinhirne, and B. Hart (2000), Thin and subvisual tropopause tropical cirrus: Observations and radiative impacts, J. Atmos. Sci., 57, 1841–1853.
Menzel, W. P., D. P. Wylie, and K. I. Strabala (1992), Seasonal and diurnal changes in cirrus clouds as seen in four years of observations with the VAS, J. Appl. Meteorol., 31, 370–385.
Mergenthaler, J. L., A. E. Roche, J. B. Kumer, G. A. Ely (1999), Cryogenic limb array etalon spectrometer observations of tropical cirrus, J. Geophys. Res., 104, 22183-22194.
Miloshevic, L. M. (2002), Parameterizations for the cross-sectional area and extinction of cirrus stratiform ice cloud particles, J. Atmos. Sci., 60, 936-956.
Mishchenko, M. I., D. J. Wielaard, and B. E. Carlson (1997), T-matrix computations of zenith-enhanced lidar backscatter from horizontally oriented ice plates, Geophys. Res. Lett., 24, 771– 774.
Mitchell, D. L. (1996), Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities, J. Atmos. Sci., 53, 1710–1723.
Murayama, T., M. Furushima, A. Oda, N. Iwasaka, and K. Kai (1996), Depolarization ratio measurements in the atmospheric boundary layer by lidar in Tokyo, J. Meteorol. Soc. Jpn., 74, 571-578.
Nazaryan, H., M. P. McCormick, and W. P. Menzel (2008), Global characterization of cirrus clouds using CALIPSO data, J. Geophys. Res., 113, D16211, doi:10.1029/2007JD009481.
Nee, J. B., G. B. Wang, P. C. Lee, and S. B. Lin (1995), Lidar studies of particles and temperatures of the atmosphere: First results from National Central University lidar, Radio Sci., 30(4), 1167–1175, doi:10.1029/95RS00642.
Nee, J. B., C. N. Len, W. N. Chen, and C. I. Lin (1998), Lidar Observation of the Cirrus Cloud in the Tropopause at Chung-Li (25°N, 121°E), J. Atmos. Sci., 55, 2249–2257.
Nee, J. B., C. W. Chiang and W. N. Chen (2005), Lidar studies of the microphysical and optical properties of thin cirrus clouds, Proc. SPIE, Vol. 5832, 110, doi:10.1117/12.619513.
Nicolas, F., L. R. Bissonnette, and P. H. Flamant (1997), Lidar effective multiple- scattering coefficients in cirrus clouds, Appl. Opt., 36, 3458–3468.
Omar, A. H., and C. S. Gardner (2001), Observations by the lidar in space technology experiment (LITE) of high altitude cirrus clouds over the equator in regions exhibiting extremely cold temperatures, J. Geophys. Res., 106, 1227-1236.
Pace, G., M. Cacciani, A. di Sarra, G. Fiocco, and D. Fua` (2003), Lidar observations of equatorial cirrus clouds at Mahe´ Seychelles, J. Geophys. Res., 108(D8), 4236, doi:10.1029/2002JD002710.
Park , M., W. J. Randel, A. Gettelman, S. T. Massie, and J. H. Jiang (2007), Transport above the Asian summer monsoon anticyclone inferred from Aura Microwave Limb Sounder tracers, J. Geophys. Res., 112, D16309, doi:10.1029/2006JD008294.
Penner, J. E., D. H. Lister, D. J. Griggs, D. J. Dokken, and M. McFarland (1999), Aviation and the Global Atmopshere: Special Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, UK.
Pfister, L., and Coauthors (2001), Aircraft observation of thin cirrus clouds near the tropical tropopause, J. Geophys. Res., 106, 9765–9786.
Platt, C. M. R. (1973), Lidar and radiometric observations of cirrus clouds, J. Atmos. Sci., 30, 1191-1204.
Platt, C. M. R., N. L. Abshire, and G. T. McNice (1978), Some microphysical properties of an ice cloud from lidar observations of horizontally oriented crystals, J. Appl. Meteorol., 17, 1220–1224.
Platt, C. M. R., J. C. Scott, and A. C. Dilley (1987), Remote sounding of high clouds. PartVI: Optical properties of midlatitude and tropical cirrus, J. Atmos. Sci., 44, 729-747.
Platt, C. M. R., and Harshavardhan (1988), Temperature dependence of cirrus extinction: Implications for climate feedback, J. Geophys. Res., 93, 11,051–11,058.
Platt, C. M., and Coauthors (1994), The Experimental Cloud Lidar Pilot Study (ECLIPS) for Cloud—Radiation Research, Bull. Amer. Meteor. Soc., 75, 1635–1654.
Platt, C. M. R., S. A. Young, P. J. Manson, G. R. Patterson, S. C. Marsden, R. T. Austin and J. H. Churnside (1998), The optical properties of equatorial cirrus from observations in the ARM pilot radiation observation experiment, J. Atmos. Sci., 55, 1977-1996.
Platt, C. M. R., D. M. Winker, M. A. Vaughan, and S. D. Miller (1999), Backscatter-to-extinction ratio in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations, J. Appl. Meteorol., 38, 1330–1345.
Platt, C. M. R., S. A. Young, R. T. Austin, G. R. Patterson, D. L. Mitchell, and S. D. Miller (2002), LIRAD observations of tropical cirrus clouds in MCTEX. Part I: Optical properties and detection of small particles in cold cirrus, J. Atmos. Sci., 59, 3145-3162.
Poole, L., and M. McCormick (1988), Airborne Lidar Observations of Arctic Polar Stratospheric Clouds: Indications of Two Distinct Growth Stages., Geophys. Res. Lett., 15, 21-23.
Potter, B. E., and J. R. Holton (1995), The role of monsoon convection in the dehydration of the lower tropical stratosphere, J. Atmos. Sci., 52(8),1034–1050.
Prabhakara, C., R. S. Fraser, G. Dalu, M. C. Wu, R. J. Curran, and T. Styles (1988), Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS, J. Appl. Meteor., 27, 379-399.
Prabhakara, C., D. P. Kratz, J.-M. Yoo, G. Dalu, and A. Vernekar (1993), Optically thin cirrus clouds: Radiative impact on the warm pool, J. Quant. Spectrosc. Radiat. Transfer, 49, 467-483.
Pratt, R. W. (1985), Review of radiosonde humidity and temperature errors, J. Atmos. Ocean. Technol., 2, 404–407.
Pruppacher H. R. and J. D. Klett (1997), Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Dordrecht Netherlands.
Quante, M. and D. O. Starr (2002), Dynamical Processes in Cirrus Clouds: A Review of Observational Results, in Cirrus, edited by D. K. Lynch et al., pp. 346– 374, Oxford Univ. Press, New York.
Ramanathan, V., E. J. Pitcher, R. C. Malone, and M. L. Blackmon (1983), The response of a general circulation model to refinements in radiative process, J. Atmos. Sci., 40, 605-630.
Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann (1989), Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment, Science, 243, 1-140.
Ramanathan, V., and W. Collins (1991), Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Nino, Nature, 351, 27– 32.
Randel,W. J., and F. Wu (2005), Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements, J. Geophys. Res., 110, D03102, doi:10.1029/2004JD005006.
Reagan, J. A., M. P. McCormick, and J. D. Spinhirne (1989), Lidar Sensing of Aerosols and Clouds in the Troposphere and Stratosphere, Proc., IEEE, 77, 433-448.
Reichardt, J., A. Ansmann, M. Serwazi, C. Weitkamp, and W. Michaelis (1996), Unexpectedly low ozone concentration in midlatitude tropospheric ice clouds: A Case Study, Geophys. Res. Lett., 23, 1929-1932.
Reichardt, J. (1999), Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar, Phys. Chem. Earth, Part B, 24, 255– 260.
Ricaud, P., B. Barret, J.-L. Attie´, E. Motte, E. Le Flochmoe¨n, H. Teysse`dre, V.-H. Peuch, N. Livesey, A. Lambert, and J.-P. Pommereau (2007), Impact of land convection on troposphere-stratosphere exchange in the tropics, Atmos. Chem. Phys., 7(21), 5639– 5657.
Rosinski, J. and J. Morgan (1991), Cloud condensation nuclei as a source of ice-forming nuclei in clouds, J. Aerosol Sci., 22, 123-133.
Roumeau, S., P. Bremaud, E. Riviere, S. Baldy, and J. L. Baray (2000), Tropical cirrus clouds: a possible sink for ozone, Geophys. Res. Lett., 27, 2233-2236.
Rydberg, B. (2007), Microphysics of ice clouds, in Establishment of Mission and Instrument Requirements to Observe Cirrus Clouds at Sub-millimetre Wavelengths, Task 1 Literature Review, edited by S. Buehler, pp. 25-50.
Sandor, B. J., E. J. Jensen, E. M. Stone, W. G. Read, J. W. Waters, and J. L. Mergenthaler (2000), Upper tropospheric humidity and thin cirrus, Geophys. Res. Lett., 27(17), 2645–2648.
Sassen, K., and G. C. Dodd (1989), Haze particle nucleation simulation in cirrus clouds, and applications for numerical and lidar studies, J. Atmos. Sci., 46, 3005–3014.
Sassen, K., and B. S. Cho (1992), Subvisual thin cirrus lidar data set for satellite verification and climatological research, J. Appl. Meteorol., 31, 1275–1285.
Sassen, K. (1995), Lidar cloud research, Rev. laser Eng., 23, 2, 148-153.
Sassen, K., G. G. Mace, J. Hallett, and M. R. Poellot (1998), Corona-producing ice clouds: a case Study of a cold mid-latitude cirrus layer, Appl. Opt., 37, 1477-1485.
Sassen, K., R. P. Benson, and J. D. Spinhirne (2000), Tropical Cirrus Cloud Properties Derived from TOGA/COARE Airborne Polarization Lidar, Geophys. Res. Lett., 27, 673-676.
Sassen, K., and J. Comstock (2001), A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part III: radiative properties, J. Atmos. Sci., 58, 2113–2127.
Saseen, K., and J. R. Cambell (2001), A mid-latitude cirrus cloud climatology from the Facility for atmospheric Remote Sensing: Part I. Microphysical and synoptic properties, J. Atmos. Sci., 58, 481– 496.
Sassen, K. (2002), Cirrus clouds: A modern perspective, in Cirrus, edited by D. Lynch et al., pp. 11– 40, Oxford Univ. Press, New York.
Sassen, K., and G. G. Mace (2002), Ground-based remote sensing of cirrus cloud, in Cirrus, edited by D. Lynch et al., pp. 168– 196, Oxford Univ. Press, New York.
Sassen, K., Z. Wang, C. M. R. Platt, and J. M. Comstock (2003), Parameterization of infrared absorption in midlatitude cirrus clouds, J. Atmos. Sci., 60, 428– 433.
Sassen, K., Z. Wang, and D. Liu (2008), The global distribution of cirrus clouds from CloudSat/Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements, J. Geophys. Res., 113, D00A12, doi:10.129/2008JD009972.
Sassen, K. and J. Zhu (2009), A global survey of CALIPSO linear depolarization ratios in ice clouds: Initial findings, J. Geophys. Res., 114, D00H07, doi:10.1029/2009JD012279.
Sassen, K., Z. Wang, and D. Liu (2009), Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat, J. Geophys. Res., 114, D00H06, doi:10.1029/2009JD011916.
Sathiyamoorthy, V., P. K. Pal, and P. C. Joshi (2004), Influence of the upper-tropospheric wind shear upon cloud radiative forcing in the Asian monsoon region, J. Clim., 17, 2725−2735.
Sathiyamoorthy, V., P. K. Pal, and P. C. Joshi (2007), Intraseasonal variability of the Tropical Easterly Jet, Meteorol. Atmos. Phys., 96, 305–316.
Savtchenko, A., R. Kummerer, P. Smith, S. Kempler and G. Leptoukh (2008), A-train data depot-bringing atmospheric measurements together, IEEE Trans. Geosci. Remote Sens., 46, 2788–2795.
Schumann, U. (2002), Contrail cirrus, in Cirrus, edited by D. Lynch et al., pp. 231–255, Oxford Univ. Press, New York.
Seifert, P., A. Ansmann, D. Muller, U. Wandinger, D. Althausen, A. J. Heymsfield, S. T. Massie, C. Schmitt (2007), Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol-polluted northeast and clean maritime southwest monsoon, J. Geophys. Res., 110, D13205. doi:10.1029/2004JD005426.
She, C.-Y. (2001), Spectral structure of laser light scattering revisited: bandwidths of nonresonant scattering lidars, Appl. Opt., 40, 4875–4884.
Sherwood, S. C. (2000), A Stratosperic ‘Drain’ over the maritime continent, Geophys. Res. Lett., 27, 677–680.
Sherwood, S. C., and A. E. Dessler (2001), A model for transport across the tropical tropopause, J. Atmos. Sci., 58, 765–779.
Sherwood, S. C., and A. E. Dessler (2003), Convective mixing near the tropopause: Insights from seasonal variations, J. Atmos. Sci., 60(22), 2674–2685.
Shimizu, A., and T. Tsuda (2000), Variations in tropical tropopause observed with radiosondes in Indonesia, Geophys. Res. Lett., 27, 2541-2544.
Sivakumar, V., Y. Bhavanikumar, P. B. Rao, K. Mizutani, T. Aoki, M. Yasui, and T. Itabe (2003), Lidar observed characteristics of the tropical cirrus clouds, Radio Sci., 38(6), 1094, doi:10.1029/2002RS002719.
Spichtinger, P., K. Gierens, U. Leiterer, and H. Dier (2003), Ice supersaturation in the tropopause region over Lindenberg, Germany, Meteorol. Z., 12, 143–156.
Starr, D. O’C., and S. K. Cox (1980), Characteristics of middle and upper tropospheric clouds as deduced from rawinsonde data, Atmos. Sci., 327, Colorado State University, Fort Collins.
Stein, B., et al. (1999), Optical classification, existence temperatures, and coexistence of different polar stratospheric cloud types, J. Geophys. Res., 104(D19), 23,983–23,993, doi:10.1029/1999JD900064.
Sunilkumar, S. V., K. Parameswaran, and B. V. Krishna Murthy (2003), Lidar Observations of cirrus cloud near the tropical tropopause: General features, Atmos. Res., 66, 203– 227.
Sunilkumar, S. V. and K. Parameswaran (2005), Temperature dependence of tropical cirrus properties and radiative effects, J. Geophys. Res., 110, D13205. doi:10.1029/2004JD005426.
Tao, Z., M. P. McCormick, and D. Wu (2008), A comparison method for spaceborne and ground-based lidar and its application to the CALIPSO lidar, Appl. Phys. B: Lasers Opt., 91, 639-644, doi:10.1007/s00340-008-3043-1.
Tsuda, T., Y. Murayama, H. Wiryosumarto, S. Harijono, and S. Kato (1994), Radiosonde observations of equatorial atmosphere dynamics over Indonesia 1. Equatorial waves and diurnal tides, J. Geophys. Res., 99(D5), 10491-10505.
Twomey, S. (1977), Atmospheric Aerosols, Elsevier Publications, Amstredam-Oxford-New York.
Twomey, S. (1991), Aerosols, clouds and radiation, Atmos. Environ., 25, 2435–2442, doi:10.1016/0960-1686(91)90159-5.
Uthe, E. E. and P. B. Russell (1997), Lidar observations of tropical high altitude cirrus clouds, in Proc. of the IAMAP Symposium on Radiation in the Atmosphere, Garmisch-Partenkirchen, Germany, 19 – 28 August 1976, pp. 242– 244.
Veerabuthiran. S. (2004), High-altitude cirrus clouds and climate, Resonance, 9, 23-32.
Wallace, J. M. and P. V. Hobbs (2006), Atmospheric Science: An Introductory Survey, Academia Press, MA, USA.
Wandinger, U. (2005), Introduction to lidar, in Lidar - Range-resolved optical remote sensing of the atmosphere, edited by C. Weitkamp, pp. 1-18, Springer, New York.
Wang, W. C., W. B. Rossow, M. S. Yao, and M. Wolfson (1981), Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback, J. Atmos. Sci., 38, 1167-1178.
Wang, P.-H., M. P. McCormick, L. R. Poole, W. P. Chu, G. K. Yue, G. S. Kent, and K. M. Skeens (1994), Tropical high cloud characteristics derived from SAGE II extinction measurements, Atmos. Res., 34,53–83.
Wang, P.-H., P. Minnis, M. P. McCormick, G. S. Kent, and K. M. Skeens (1996), A 6 year climatology of cloud occurrence frequency from stratospheric aerosol and Gas Experiment II observations (1985-1990), J. Geophys. Res., 101, 29407-29429.
Wang, Z., and K. Sassen (2002), Cirrus cloud microphysical property retrieval using lidar and radar measurements. part II: Midlatitude cirrus microphysical and radiative properties, J. Atmos. Sci., 59, 2291– 2302.
Wang, L., and A. E. Dessler (2006), Instantaneous cloud overlap statistics in the tropical area revealed by ICESat/GLAS data, Geophys. Res. Lett., 33, L15804, doi:10.1029/2005GL024350.
Waters, J. W., et al. (2006), The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 44(5), 1075– 1092, doi:10.1109/TGRS.2006.873771.
Weber, A., S. P. S. Porto, L. E. Cheesman, and J. J. Barrett (1967), High-resolution Raman spectroscopy of gases with cw-laser excitation, J. Opt. Soc. Am., 57, 19- 28.
Wild, M., and E. Roeckner (2006), Radiative Fluxes in the ECHAM5 General Circulation Model, J. Climate, 19, 3792-3809.
Winker, D. M. and C. R. Trepte, (1998), Laminar cirrus observed near the tropical tropopause by LTTE, Geophys. Res. Lett., 25, 3351–3354.
Winker, D. M., J. Pelon, and M. P. McCormick (2003), The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds, Proc. SPIE, 4893, 1-11.
Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aura MLS cloud ice water content measurements, J. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.
Wylie, D. P., W. P. Menzel, H. M. Woolf, and K. I. Strabala (1994), Four years of Global Cirrus Cloud Statistics Using HIRS, J. Clim., 7, 1972-1986.
Wylie, D. P., and W. P. Menzel (1999), Eight years of high cloud statistics using HIRS, J. Clim., 12, 170–184.
Wylie, D. (2002), Cirrus and Weather: A satellite perspective, in Cirrus, edited by D. Lynch et al., pp. 136– 146, Oxford Univ. Press, New York.
Yamamoto, M. K., M. Oyamatsu, T. Horinouchi, H. Hashiguchi, and S. Fukao (2003), High time resolution determination of the tropical tropopause by the Equatorial Atmosphere Radar, Geophys. Res. Lett., 30, 3 (1-4).
Yang, Q., Q. Fu, and Y. Hu (2010), Radiative Impacts of Clouds in the Tropical Tropopause Layer, J. Geophys. Res., 115, D00H12, doi:10.1029/2009JD012393.
Young, A. T. (1980), On the Rayleigh-Scattering Optical Depth of the Atmosphere, J. Appl. Meteor., 20, pp. 328-330.
Young, S. (1995), Analysis of lidar backscatter profiles in optically thin cirrus, Appl. Opt., 34, 7019-7031.
Zaccanti, G., P. Bruscaglioni, M. Gurioli, and P. Sansoni (1993), Laboratory simulations of lidar returns from clouds-experimental and numerical results, Appl. Opt., 32, 1590–1597.
指導教授 倪簡白(J. B. Nee) 審核日期 2011-3-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明