博碩士論文 942404003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.231.230.177
姓名 張鈺媖(Yu-Ying Chang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 砷化物結合蛋白之研究
(The study of arsenic-binding proteins)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究★ Galectin-1 與 Thioredoxin peroxidase II 基因之選殖及表現
★ 亞砷酸鈉誘引分裂中期停滯細胞之蛋白質體研究★ Galectin-1蛋白與亞砷酸鈉毒性與結合作用之研究
★ 氧化壓迫與p53參與三氯乙烯及四氯乙烯誘導人類肺癌細胞凋亡之研究★ Thioredoxin Peroxidase II蛋白與亞砷酸鈉毒性與結合作用之研究
★ 環型類★ 綠茶對前脂肪細胞生長的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當砷化物進入細胞內,在細胞內的累積作用是造成毒性的重要原因。本研究藉由p-aminophenylarsine oxide (PAO)親和管柱及蛋白質體學技術鑑定抗砷細胞 (SA7, 源自中國倉鼠卵巢細胞CHOA)的砷化物結合蛋白,以利系統性研究砷化物作用的標的,並了解蛋白質序列上cysteine數目及位置與砷結合之機制及對蛋白質特性的影響。結果顯示表現量差異超過兩倍以上的蛋白中,至少有11個蛋白在SA7細胞中表現量是增加的,而有8個蛋白表現量是降低的;除先前已鑑定為砷化物結合蛋白的galectin-1 (hamster GAL1, haGAL1)及peroxiredoxin 1 (Prdx1)外,本研究也發現在胺基酸序列上只含有一個cysteine的heat-shock protein 27 (HSP27)與完全不具有cysteine的reticulocalbin-3 (RCN3)皆會與砷產生結合作用,而與Prdx1同屬peroxiredoxin家族的peroxiredoxin 6 (Prdx6),雖亦具有一個cysteine,但不具有與砷結合的能力。進一步以蛋白質點突變技術 (site-directed mutagenesis),探討cysteine在蛋白質中與砷結合所扮演的角色,結果顯示GAL1-Cys16、GAL1-Cys88點突變、所有GAL1-cysteine雙重點突變組及HSP27-CA突變組會顯著降低haGAL1和HSP27對砷化物的結合能力;GAL1-Cys60突變組則較wild type GAL1 (haGAL1WT)及其他突變組與砷有較強的結合能力。圓二色光譜儀 (circular dichroism, CD)的結果也顯示亞砷酸鈉的存在會明顯改變haGAL1WT及HSP27-CA的熱穩定性及熔解溫度 (melting temperature, Tm)。以上結果說明特殊位置的cysteine在影響GAL1與砷的結合力上扮演重要的角色。當單一突變GAL1序列上具-OH基的Thr90、Thr97及帶負電胺基酸的Glu86、Glu105或Glu134後,反而會明顯增加GAL1與砷的結合力;此外,當存在亞砷酸鈉時,會造成這些非cysteine胺基酸突變組的圓二色光譜圖明顯的位移。這些結果也顯示當haGAL1與砷產生結合後,其二級結構也可受特殊非cysteine胺基酸的影響。並利用核磁共振 (nuclear magnetic resonance, NMR)技術探討亞砷酸鈉結合對人類GAL1 (hGAL1)序列中胺基酸的化學位移,顯示隨著亞砷酸鈉濃度的增加,不但會使光譜的訊號減弱,並增加某些胺基酸的位移;此結果顯示,隨著亞砷酸鈉與hGAL1蛋白的結合濃度增加,可能牽動更多胺基酸產生變化。目前已利用坐式蒸氣擴散法 (sitting drop vapor diffusion)培養出hGAL1的晶體,並可觀察到蛋白質的繞射點,進一步利用X-ray晶體繞射法 (X-ray crystallography)分析蛋白質的結構,以釐清hGAL1蛋白質與亞砷酸鈉產生結合的機制。依據本研究我們瞭解在GAL1及HSP27蛋白與砷化物結合上,特定的cysteine扮演了非常重要的角色,與砷結合會改變蛋白質結構,但在RCN3及Prdx6中,與砷的作用力可能受其他因子影響。
摘要(英) Arsenic is toxic to the cells in the living organisms. The present dissertation was designed to characterize arsenic-binding proteins, which were isolated from the arsenic-resistant Chinese hamster ovary cell line SA7 by the methods of a p-aminophenylarsine oxide (PAO)-agarose affinity column and proteomic techniques. The study was also to understand how arsenic-binding proteins interact with arsenic based on their number and position of cysteine residues. The results showed that there were 11 up-regulated and 8 down-regulated proteins in SA7 cells. The arsenic-binding proteins eluted from the PAO-agarose column included heat shock protein 27 (HSP27, with one cysteine residue), reticulocalbin-3 (RCN3, with no cysteine residue), and hamster galectin-1 (haGAL1, with six cysteine residues) while peroxiredoxin 6 (Prdx6) containing one cysteine residue was not eluted from this column. Site-directed mutagenesis of these arsenic-binding proteins at the cysteine residue to alanine further indicated that GAL1-C16A, GAL1-C88A, all double mutants of haGAL1, and HSP27-CA mutant exhibited much less binding capacity for sodium arsenite when compared to the wild-type GAL1 (haGAL1WT) and HSP27 proteins. In contrast, the GAL1-C60A mutant had greater binding capacity than the haGAL1WT and other haGAL1 mutants. Circular dichroism (CD) analysis also showed that the presence of sodium arsenite caused significant changes in the thermal stability and the melting temperature of haGAL1WT and HSP27-CA mutants. These observations suggest that the particular positions of cysteine residue affect the binding capacity of haGAL1 for arsenic. Interestingly, the single mutation in amino acid position of either Thr90, Thr97, Glu86, Glu105, or Glu134 was formed to significantly increase the binding capacity for haGAL1 with arsenite. Furthermore, these non-cysteine amino acid mutants displayed a significiently shift of CD curve in the presence of sodium arsenite. This suggests that the secondary structure of haGAL1 responsible for binding to arsenic is also dependent on the particular non-cysteine amino acid residues. Moreover, nuclear magnetic resonance (NMR) analysis showed that sodium arsenite induced chemical shift of amino acids in human GAL1 (hGAL1) in a dose-dependent manner and increasing concentrations of arsenite decreased the NMR signal and increased structural movement of amino acids. Finally, the hGAL1 protein was crystallized by the sitting-drop vapour-diffusion method, and the hGAL1 crystal will form the basis for further X-ray crystallographical analysis to delineate the exact mechanism of how the hGAL1 protein binds to sodium arsenite. Taken together, these results of the dissertation provide the insight into our understanding that the particular cysteine residues in GAL1 and HSP27 may play a critical role in the binding of arsenic and then change the structure of these proteins, but that in the case of RCN3 and Prdx6, this interaction may be mediated by other factors.
關鍵字(中) ★ 亞砷酸鈉
★ 砷結合蛋白
★ 半胱胺酸
關鍵字(英) ★ cysteine
★ arsenic-binding protein
★ sodium arsenite
★ galectin-1
★ heat shock protein 27
★ reticulocalbin-3
論文目次 摘要. i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xi
縮寫表 xii
第一章 緒論 1
1. 砷化物的來源與分佈 1
2. 砷化物的種類與生物代謝 1
3. 砷化物的毒性 1
4. 砷化物對疾病的治療 3
5. 砷化物與蛋白質結合之關聯性 4
6. 研究動機 6
7. 研究目的 6
第二章 材料與方法 8
1. 細胞培養及蛋白質的製備 8
2. 分離與鑑定砷結合蛋白 8
2.1 製備p-aminophenylarsine oxide (PAO)親和性管柱 8
2.2 砷結合蛋白的親和性層析分析 9
2.3 二維蛋白質凝膠電泳 (Two-dimensional electrophoresis, 2-DE) 10
2.4 膠體內分解胜肽片段 (In-gel tryptic digestion) 10
2.5 胺基酸序列分析及蛋白質資料庫搜尋 11
3. RCN3, HSP27, Prdx6 及 haGAL1 表現載體的建構 11
4. HSP27及haGAL1突變組的建構 12
5. 結合分析 13
5.1 重組蛋白與PAO親和性膠體結合量 13
5.2 砷與蛋白質的共析出 (co-elution) 13
5.3 感應耦合電漿質譜分析儀 (inductively coupled plasma mass spectrometry, ICP-MS) 13
5.4 螢光光譜測量 14
5.5 圓二色光譜儀 (circular dichroism, CD) 14
5.6 核磁共振(nuclear magnetic resonance, NMR) 16
5.6.1 人類GAL1蛋白 (hGAL1)的表現及純化 17
5.7 蛋白質結晶實驗 18
6. 統計分析 20
第三章 結果 21
1. 比較CHOA及SA7細胞粗萃取液蛋白質表現差異 21
2. 砷化物結合蛋白的分離及鑑定 21
2.1 p-aminophenylarsine oxide (PAO)親和性膠體的合成及測試 21
2.2 鑑定SA7細胞中可能的砷結合蛋白 22
2.3 CHOA及SA7細胞與砷化物結合力較弱的蛋白質 23
3. 以重組蛋白探討與砷的結合能力 24
3.1 砷結合蛋白質的表現及純化 24
3.2 評估蛋白質與砷的結合力 25
3.3 砷結合對蛋白質熱穩定性的影響 26
4. GAL1與砷結合的機制 26
4.1 序列上cysteine點突變影響haGAL1與砷結合的能力 26
4.1.1 haGAL1-As(III)複合物的螢光光譜及結合常數 27
4.1.2 haGAL1與砷結合量的測定 28
4.2 Cysteine點突變與砷結合對haGAL1二級結構的影響 28
4.3 haGAL1序列中其他非cysteine胺基酸對GAL1與砷結合能力的影響 29
4.4 haGAL1蛋白非cysteine胺基酸與砷結合對GAL1二級結構的影響 30
4.5 砷結合對GAL1序列中胺基酸的化學位移 31
4.6 hGAL1與hGAL1-As(III)複合物的結晶實驗 33
第四章 討論 35
第五章 結論與展望 47
參考文獻 48
附錄 101
Supplemental Fig. 1. The map of pGEM-T Easy vector. 101
Supplemental Fig. 2. The map of pQE31 vector. 102
Supplemental Fig. 3. The map of pGEMEX-1-(modified)-hGAL1. 103
參考文獻 Akao, Y., Nakagawa, Y., and Akiyama, K. (1999). Arsenic trioxide induces apoptosis in neuroblastoma cell lines through the activation of caspase 3 in vitro. FEBS Lett. 455, 59-62.
Alexander, J. S., Minagar, A., Harper, M., Robinson-Jackson, S., Jennings, M., and Smith, S. J. (2007). Proteomic analysis of human cerebral endothelial cells activated by multiple sclerosis serum and IFNbeta-1b. J. Mol. Neurosci. 32, 169-178.
Anastasiou, D., Poulogiannis, G., Asara, J. M., Boxer, M. B., Jiang, J. K., Shen, M., Bellinger, G., Sasaki, A. T., Locasale, J. W., Auld, D. S., Thomas, C. J., Vander Heiden, M. G., and Cantley, L. C. (2011). Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278-1283.
Aposhian, H. V. (1989). Biochemical toxicology of arsenic. Rev. Biochem. Toxicol. 10, 265-299.
Aposhian, H. V., and Aposhian, M. M. (1989). Newer developments in arsenic toxicity. J. Am. Coll. Toxicol. 8, 1297-1305.
Bachleitner-Hofmann, T., Gisslinger, B., Grumbeck, E., and Gisslinger, H. (2001). Arsenic trioxide and ascorbic acid: synergy with potential implications for the treatment of acute myeloid leukaemia? Br. J. Haematol. 112, 783-786.
Barondes, S. H., Cooper, D. N., Gitt, M. A., and Leffler, H. (1994). Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 269, 20807-20810.
Barrett, M. P., and Fairlamb, A. H. (1999). The biochemical basis of arsenical-diamidine crossresistance in African trypanosomes. Parasitol. Today 15, 136-140.
Benvenuto, G., Carpentieri, M. L., Salvatore, P., Cindolo, L., Bruni, C. B., and Chiariotti, L. (1996). Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region. Mol. Cell Biol. 16, 2736-2743.
Bertolero, F., Pozzi, G., Sabbioni, E., and Saffiotti, U. (1987). Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8, 803-808.
Bhattacharjee, H., Li, J., Ksenzenko, M. Y., and Rosen, B. P. (1995). Role of cysteinyl residues in metalloactivation of the oxyanion-translocating ArsA ATPase. J. Biol. Chem. 270, 11245-11250.
Bhattacharjee, H., and Rosen, B. P. (1996). Spatial proximity of Cys113, Cys172, and Cys422 in the metalloactivation domain of the ArsA ATPase. J. Biol. Chem. 271, 24465-24470.
Bode, A. M., and Dong, Z. (2002). The paradox of arsenic: molecular mechanisms of cell transformation and chemotherapeutic effects. Crit. Rev. Oncol. Hematol. 42, 5-24.
Bogdan, G. M., Sampayo-Reyes, A., and Aposhian, H. V. (1994). Arsenic binding proteins of mammalian systems: I. Isolation of three arsenite-binding proteins of rabbit liver. Toxicology 93, 175-93.
Boquist, L., Boquist, S., and Ericsson, I. (1988). Structural beta-cell changes and transient hyperglycemia in mice treated with compounds inducing inhibited citric acid cycle enzyme activity. Diabetes 37, 89-98.
Brown, K. G., Boyle, K. E., Chen, C. W., and Gibb, H. J. (1989). A dose-response analysis of skin cancer from inorganic arsenic in drinking water. Risk Anal. 9, 519-528.
Brownlee, M. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813-820.
Bryk, R., Griffin, P., and Nathan, C. (2000). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211-215.
Buchet, J. P., Lauwerys, R., and Roels, H. (1981). Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. Int. Arch. Occup. Environ. Health 48, 71-79.
Camby, I., Le Mercier, M., Lefranc, F., and Kiss, R. (2006). Galectin-1: a small protein with major functions. Glycobiology 16, 137R-157R.
Carlson-Lynch, H., Beck, B. D., and Boardman, P. D. (1994). Arsenic risk assessment. Environ. Health Perspect. 102, 354-356.
Carter, D. E., Aposhian, H. V., and Gandolfi, A. J. (2003). The metabolism of inorganic arsenic oxides, gallium arsenide, and arsine: a toxicochemical review. Toxicol. Appl. Pharmacol. 193, 309-334.
Chang, K. N., Lee, T. C., Tam, M. F., Chen, Y. C., Lee, L. W., Lee, S. Y., Lin, P. J., and Huang, R. N. (2003). Identification of galectin I and thioredoxin peroxidase II as two arsenic-binding proteins in Chinese hamster ovary cells. Biochem. J. 371, 495-503.
Chang, Y. Y., Chiang, M. C., Kuo, T. C., Chi, L. L., Kao, Y. H., and Huang, R. N. (2011). The down-regulation of galectin-1 expression is a specific biomarker of arsenic toxicity. Toxicol. Lett. 205, 38-46.
Chen, C. J., Chuang, Y. C., You, S. L., Lin, T. M., and Wu, H. Y. (1986). A retrospective study on malignant neoplasms of bladder, lung and liver in blackfoot disease endemic area in Taiwan. Br. J. Cancer. 53, 399-405.
Chen, C. J., Wu, M. M., Lee, S. S., Wang, J. D., Cheng, S. H., and Wu, H. Y. (1988). Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 8, 452-460.
Chen, G. Q., Shi, X. G., Tang, W., Xiong, S. M., Zhu, J., Cai, X., Han, Z. G., Ni, J. H., Shi, G. Y., Jia, P. M., Liu, M. M., He, K. L., Niu, C., Ma, J., Zhang, P., Zhang, T. D., Paul, P., Naoe, T., Kitamura, K., Miller, W., Waxman, S., Wang, Z. Y., de The, H., Chen, S. J., and Chen, Z. (1997). Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood 89, 3345-3353.
Chen, G. Q., Zhu, J., Shi, X. G., Ni, J. H., Zhong, H. J., Si, G. Y., Jin, X. L., Tang, W., Li, X. S., Xong, S. M., Shen, Z. X., Sun, G. L., J., M., Zhang, P., Zhang, T. D., Gazin, C., Naoe, T., Chen, S. J., Wang, Z. Y., and Chen, Z. (1996). In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88, 1052-1061.
Choi, Y. J., Park, J. W., Suh, S. I., Mun, K. C., Bae, J. H., Song, D. K., Kim, S. P., and Kwon, T. K. (2002). Arsenic trioxide-induced apoptosis in U937 cells involve generation of reactive oxygen species and inhibition of Akt. Int. J. Oncol. 21, 603-610.
Crete, P., and Landry, J. (1990). Induction of HSP27 phosphorylation and thermoresistance in Chinese hamster cells by arsenite, cycloheximide, A23187, and EGTA. Radiat. Res. 121, 320-327.
Cui, X., Kobayashi, Y., Akashi, M., and Okayasu, R. (2008). Metabolism and the paradoxical effects of arsenic: carcinogenesis and anticancer. Curr. Med. Chem. 15, 2293-2304.
Cullen, W. R., and Reimer, K. J. (1989). Arsenic speciation in the environment. Chem. Rev. 89, 713-774.
Del Razo, L. M., Arellano, M. A., and Cebrian, M. E. (1990). The oxidation states of arsenic in well-water from a chronic arsenicism area of northern Mexico. Environ. Pollut. 64, 143-153.
Delnomdedieu, M., Basti, M. M., Otvos, J. D., and Thomas, D. J. (1993). Transfer of arsenite from glutathione to dithiols: a model of interaction. Chem. Res. Toxicol. 6, 598-602.
Delnomdedieu, M., Basti, M. M., Styblo, M., Otvos, J. D., and Thomas, D. J. (1994). Complexation of arsenic species in rabbit erythrocytes. Chem. Res. Toxicol. 7, 621-627.
Dey, S., Papadopoulou, B., Haimeur, A., Roy, G., Grondin, K., Dou, D., Rosen, B. P., and Ouellette, M. (1994). High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol. Biochem. Parasitol. 67, 49-57.
Diaz-Latoud, C., Buache, E., Javouhey, E., and Arrigo, A. P. (2005). Substitution of the unique cysteine residue of murine Hsp25 interferes with the protective activity of this stress protein through inhibition of dimer formation. Antioxid. Redox Signal. 7, 436-445.
Du, X. L., Edelstein, D., Rossetti, L., Fantus, I. G., Goldberg, H., Ziyadeh, F., Wu, J., and Brownlee, M. (2000). Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl. Acad. Sci. USA 97, 12222-12226.
Dyson, H. J., and Wright, P. E. (1998). Equilibrium NMR studies of unfolded and partially folded proteins. Nat. Struct. Biol. 5 Suppl, 499-503.
Elola, M. T., Chiesa, M. E., Alberti, A. F., Mordoh, J., and Fink, N. E. (2005). Galectin-1 receptors in different cell types. J. Biomed. Sci. 12, 13-29.
Fischer, A. B., Buchet, J. P., and Lauwerys, R. R. (1985). Arsenic uptake, cytotoxicity and detoxification studied in mammalian cells in culture. Arch. Toxicol. 57, 168-172.
Flora, S. J. (2011). Arsenic-induced oxidative stress and its reversibility. Free Radic. Biol. Med. 51, 257-281.
Fuertes, M. B., Molinero, L. L., Toscano, M. A., Ilarregui, J. M., Rubinstein, N., Fainboim, L., Zwirner, N. W., and Rabinovich, G. A. (2004). Regulated expression of galectin-1 during T-cell activation involves Lck and Fyn kinases and signaling through MEK1/ERK, p38 MAP kinase and p70S6 kinase. Mol. Cell Biochem. 267, 177-185.
Gallagher, B. M., and Phelan, S. A. (2007). Investigating transcriptional regulation of Prdx6 in mouse liver cells. Free Radic. Biol. Med. 42, 1270-1277.
Ghosh, M., Shen, J., and Rosen, B. P. (1999). Pathways of As(III) detoxification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96, 5001-5006.
Gladysheva, T. B., Oden, K. L., and Rosen, B. P. (1994). Properties of the arsenate reductase of plasmid R773. Biochemistry 33, 7288-7293.
Grad, J. M., Bahlis, N. J., Reis, I., Oshiro, M. M., Dalton, W. S., and Boise, L. H. (2001). Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98, 805-813.
Gresser, M. J. (1981). ADP-arsenate, formation by submitochondrial particals under phosphorylating conditions. J. Biol. Chem. 256, 5981-5983.
Gurr, J. R., Liu, F., Lynn, S., and Jan, K. Y. (1998). Calcium-dependent nitric oxide production is involved in arsenite-induced micronuclei. Mutat. Res. 416, 137-148.
Hirabayashi, J., and Kasai, K. (1991). Effect of amino acid substitution by sited-directed mutagenesis on the carbohydrate recognition and stability of human 14-kDa beta-galactoside-binding lectin. J. Biol. Chem. 266, 23648-23653.
Hoffman, R. D., and Lane, M. D. (1992). Iodophenylarsine oxide and arsenical affinity chromatography: new probes for dithiol proteins. Application to tubulins and to components of the insulin receptor-glucose transporter signal transduction pathway. J. Biol. Chem. 267, 14005-14011.
Hofmann, B., Hecht, H. J., and Flohe, L. (2002). Peroxiredoxins. Biol. Chem. 383, 347-364.
Honore, B. (2009). The rapidly expanding CREC protein family: members, localization, function, and role in disease. Bioessays 31, 262-277.
Honore, B., and Vorum, H. (2000). The CREC family, a novel family of multiple EF-hand, low-affinity Ca(2+)-binding proteins localised to the secretory pathway of mammalian cells. FEBS Lett. 466, 11-18.
Horie, H., Kadoya, T., Hikawa, N., Sango, K., Inoue, H., Takeshita, K., Asawa, R., Hiroi, T., Sato, M., Yoshioka, T., and Ishikawa, Y. (2004). Oxidized galectin-1 stimulates macrophages to promote axonal regeneration in peripheral nerves after axotomy. J. Neurosci. 24, 1873-1880.
Huang, C. F., Chen, Y. W., Yang, C. Y., Tsai, K. S., Yang, R. S., and Liu, S. H. (2011). Arsenic and diabetes: current perspectives. Kaohsiung J. Med. Sci. 27, 402-410.
Huang, R. N., and Lee, T. C. (1996). Arsenite efflux is inhibited by verapamil, cyclosporin A, and GSH-depleting agents in arsenite-resistant Chinese hamster ovary cells. Toxicol. Appl. Pharmacol. 141, 17-22.
Hughes, R. C. (1999). Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta. 1473, 172-185.
Iglesias, M. M., Rabinovich, G. A., Ivanovic, V., Sotomayor, C., and Wolfenstein-Todel, C. (1998). Galectin-1 from ovine placenta--amino-acid sequence, physicochemical properties and implications in T-cell death. Eur. J. Biochem. 252, 400-407.
Ishii, T., Yamada, M., Sato, H., Matsue, M., Taketani, S., Nakayama, K., Sugita, Y., and Bannai, S. (1993). Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J. Biol. Chem. 268, 18633-18636.
Iwahara, S., Satoh, H., Song, D. X., Webb, J., Burlingame, A. L., Nagae, Y., and Muller-Eberhard, U. (1995). Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry 34, 13398-13406.
Ji, G., Garber, E. A., Armes, L. G., Chen, C. M., Fuchs, J. A., and Silver, S. (1994). Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochemistry 33, 7294-7299.
Ji, G., and Silver, S. (1992). Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J. Bacteriol. 174, 3684-3694.
Jing, H. M., Yukihiro, S., Ke, X. Y., Yoshiro, K., and Akiharu, W. (2002). Effect of arsenic trioxide on different cell lines derived from chronic myeloid leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 10, 413-418.
Kala, S. V., Neely, M. W., Kala, G., Prater, C. I., Atwood, D. W., Rice, J. S., and Lieberman, M. W. (2000). The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J. Biol. Chem. 275, 33404-33408.
Kalef, E., and Gitler, C. (1994). Purification of vicinal dithiol-containing proteins by arsenical-based affinity chromatography. Meth. Enzymol. 233, 395-403.
Kamiya, K., Cruse, W. B., and Kennard, O. (1983). The arsonomethyl group as an analogue of phosphate. An X-ray investigation. Biochem. J. 213, 217-223.
Kang, S. W., Baines, I. C., and Rhee, S. G. (1998). Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. J. Biol. Chem. 273, 6303-6311.
Karkaria, C. E., Chen, C. M., and Rosen, B. P. (1990). Mutagenesis of a nucleotide-binding site of an anion-translocating ATPase. J. Biol. Chem. 265, 7832-7836.
Kaur, P., and Rosen, B. P. (1993). Complementation between nucleotide binding domains in an anion-translocating ATPase. J. Bacteriol. 175, 351-357.
Kaur, S., Kamli, M. R., and Ali, A. (2011). Role of arsenic and its resistance in nature. Can. J. Microbiol. 57, 769-774.
Kelly, S. M., Jess, T. J., and Price, N. C. (2005). How to study proteins by circular dichroism. Biochim. Biophys. Acta. 1751, 119-139.
Kenney, L. J., and Kaplan, J. H. (1988). Arsenate substitutes for phosphate in the human red cell sodium pump and anion exchanger. J. Biol. Chem. 263, 7954-7960.
Kitchin, K. T. (2001). Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol. Appl. Pharmacol. 172, 249-261.
Kitchin, K. T., and Wallace, K. (2005). Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-alpha. Toxicol. Appl. Pharmacol. 206, 66-72.
Kitchin, K. T., and Wallace, K. (2006). Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J. Biochem. Mol. Toxicol. 20, 35-38.
Kitchin, K. T., and Wallace, K. (2008). The role of protein binding of trivalent arsenicals in arsenic carcinogenesis and toxicity. J. Inorg. Biochem. 102, 532-539.
Lantz, R. C., Lynch, B. J., Boitano, S., Poplin, G. S., Littau, S., Tsaprailis, G., and Burgess, J. L. (2007). Pulmonary biomarkers based on alterations in protein expression after exposure to arsenic. Environ. Health Perspect. 115, 586-591.
Lau, A. T., He, Q. Y., and Chiu, J. F. (2004). A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem. J. 382, 641-650.
Lee-Chen, S. F., Gurr, J. R., Lin, I. B., and Jan, K. Y. (1993). Arsenite enhances DNA double-strand breaks and cell killing of methyl methanesulfonate-treated cells by inhibiting the excision of alkali-labile sites. Mutat. Res. 294, 21-28.
Lee, T. C., and Ho, I. C. (1994). Expression of heme oxygenase in arsenic-resistant human lung adenocarcinoma cells. Cancer Res. 54, 1660-1664.
Lee, T. C., Huang, R. Y., and Jan, K. Y. (1985a). Sodium arsenite enhances the cytotoxicity, clastogenicity, and 6-thioguanine-resistant mutagenicity of ultraviolet light in Chinese hamster ovary cells. Mutat. Res. 148, 83-89.
Lee, T. C., Lee, K. C., Tzeng, Y. J., Huang, R. Y., and Jan, K. Y. (1986). Sodium arsenite potentiates the clastogenicity and mutagenicity of DNA crosslinking agents. Environ. Mutagen. 8, 119-128.
Lee, T. C., Oshimura, M., and Barrett, J. C. (1985b). Comparison of arsenic-induced cell transformation, cytotoxicity, mutation and cytogenetic effects in Syrian hamster embryo cells in culture. Carcinogenesis 6, 1421-1426.
Li, W., and Chou, I. N. (1992). Effects of sodium arsenite on the cytoskeleton and cellular glutathione levels in cultured cells. Toxicol. Appl. Pharmacol. 114, 132-139.
Liang, L., Tajmir-Riahi, H. A., and Subirade, M. (2008). Interaction of beta-lactoglobulin with resveratrol and its biological implications. Biomacromolecules 9, 50-56.
Liao, D. I., Kapadia, G., Ahmed, H., Vasta, G. R., and Herzberg, O. (1994). Structure of S-lectin, a developmentally regulated vertebrate beta-galactoside-binding protein. Proc. Natl. Acad. Sci. USA 91, 1428-1432.
Lin, C. H., Huang, C. F., Chen, W. Y., Chang, Y. Y., Ding, W. H., Lin, M. S., Wu, S. H., and Huang, R. N. (2006). Characterization of the interaction of galectin-1 with sodium arsenite. Chem. Res. Toxicol. 19, 469-474.
Liu, Y. C., and Huang, H. (1997). Involvement of calcium-dependent protein kinase C in arsenite-induced genotoxicity in Chinese hamster ovary cells. J. Cell Biochem. 64, 423-433.
Lo, J. F., Wang, H. F., Tam, M. F., and Lee, T. C. (1992). Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem. J. 288, 977-982.
Lopez-Lucendo, M. F., Solis, D., Andre, S., Hirabayashi, J., Kasai, K., Kaltner, H., Gabius, H. J., and Romero, A. (2004). Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by single-site mutations and their impact on the thermodynamics of ligand binding. J. Mol. Biol. 343, 957-970.
Lynn, S., Lai, H. T., Gurr, J. R., and Jan, K. Y. (1997). Arsenite retards DNA break rejoining by inhibiting DNA ligation. Mutagenesis 12, 353-358.
Maeda, H., Hori, S., Nishitoh, H., Ichijo, H., Ogawa, O., Kakehi, Y., and Kakizuka, A. (2001). Tumor growth inhibition by arsenic trioxide (As2O3) in the orthotopic metastasis model of androgen-independent prostate cancer. Cancer Res. 61, 5432-5440.
Mandeville, J. S., Froehlich, E., and Tajmir-Riahi, H. A. (2009). Study of curcumin and genistein interactions with human serum albumin. J. Pharm. Biomed. Anal. 49, 468-474.
Manevich, Y., Feinstein, S. I., and Fisher, A. B. (2004). Activation of the antioxidant enzyme 1-CYS peroxiredoxin requires glutathionylation mediated by heterodimerization with pi GST. Proc. Natl. Acad. Sci. USA 101, 3780-3785.
Manevich, Y., and Fisher, A. B. (2005). Peroxiredoxin 6, a 1-Cys peroxiredoxin, functions in antioxidant defense and lung phospholipid metabolism. Free Radic. Biol. Med. 38, 1422-1432.
Manevich, Y., Sweitzer, T., Pak, J. H., Feinstein, S. I., Muzykantov, V., and Fisher, A. B. (2002). 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc. Natl. Acad. Sci. USA 99, 11599-11604.
Mass, M. J., and Wang, L. (1997). Arsenic alters cytosine methylation patterns of the promoter of the tumor suppressor gene p53 in human lung cells: a model for a mechanism of carcinogenesis. Mutat. Res. 386, 263-277.
Menzel, D. B., Hamadeh, H. K., Lee, E., Meacher, D. M., Said, V., Rasmussen, R. E., Greene, H., and Roth, R. N. (1999). Arsenic binding proteins from human lymphoblastoid cells. Toxicol. Lett. 105, 89-101.
Mitchell, R. A., Chang, B. F., Huang, C. H., and DeMaster, E. G. (1971). Inhibition of mitochrondrial energy-linked functions by arsenate, evidence for a nonhydrolytic mode of inhibition action. Biochemistry (Mosc) 10, 2049-2054.
Mizumura, A., Watanabe, T., Kobayashi, Y., and Hirano, S. (2010). Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol. Appl. Pharmacol. 242, 119-125.
Mortz, E., Krogh, T. N., Vorum, H., and Gorg, A. (2001). Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1, 1359-1363.
Nesmelova, I. V., Pang, M., Baum, L. G., and Mayo, K. H. (2008). 1H, 13C, and 15N backbone and side-chain chemical shift assignments for the 29 kDa human galectin-1 protein dimer. Biomol. NMR Assign. 2, 203-5.
Nickel, W. (2003). The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur. J. Biochem. 270, 2109-2119.
Ning, S., and Knox, S. J. (2004). Increased cure rate of glioblastoma using concurrent therapy with radiotherapy and arsenic trioxide. Int. J. Radiat. Oncol. Biol. Phys. 60, 197-203.
Ning, S., and Knox, S. J. (2006). Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma. Int. J. Radiat. Oncol. Biol. Phys. 65, 493-498.
Ochi, T., Kaise, T., and Oya-Ohta, Y. (1994). Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia 50, 115-120.
Oya-Ohta, Y., Kaise, T., and Ochi, T. (1996). Induction of chromosomal aberrations in cultured human fibroblasts by inorganic and organic arsenic compounds and the different roles of glutathione in such induction. Mutat. Res. 357, 123-129.
Pace, K. E., Hahn, H. P., and Baum, L. G. (2003). Preparation of recombinant human galectin-1 and use in T-cell death assays. Methods Enzymol. 363, 499-518.
Papadopoulou, B., Roy, G., Dey, S., Rosen, B. P., and Ouellette, M. (1994). Contribution of the Leishmania P-glycoprotein-related gene ltpgpA to oxyanion resistance. J. Biol. Chem. 269, 11980-11986.
Peshenko, I. V., and Shichi, H. (2001). Oxidation of active center cysteine of bovine 1-Cys peroxiredoxin to the cysteine sulfenic acid form by peroxide and peroxynitrite. Free Radic. Biol. Med. 31, 292-303.
Qian, Y., Castranova, V., and Shi, X. (2003). New perspectives in arsenic-induced cell signal transduction. J. Inorg. Biochem. 96, 271-278.
Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., and Iacobelli, S. (2002). Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 23, 313-320.
Rapoport, E. M., Kurmyshkina, O. V., and Bovin, N. V. (2008). Mammalian galectins: structure, carbohydrate specificity, and functions. Biochemistry (Mosc) 73, 393-405.
Reichl, F. X., Kreppel, H., Szinicz, L., Fichtl, B., and Forth, W. (1991). Effect of glucose treatment on carbohydrate content in various organs in mice after acute As2O3 poisoning. Vet. Hum. Toxicol. 33, 230-235.
Reichl, F. X., Szinicz, L., Kreppel, H., and Forth, W. (1988). Effect of arsenic on carbohydrate metabolism after single or repeated injection in guinea pigs. Arch. Toxicol. 62, 473-475.
Rojewski, M. T., Korper, S., and Schrezenmeier, H. (2004). Arsenic trioxide therapy in acute promyelocytic leukemia and beyond: from bench to beside. Leuk. Lymphoma 45, 2387-2401.
Rosen, B. P. (2002). Biochemistry of arsenic detoxification. FEBS Lett. 529, 86-92.
Schinella, G. R., Tournier, H. A., Buschiazzo, H. O., and de Buschiazzo, P. M. (1996). Effect of arsenic (V) on the antioxidant defense system: in vitro oxidation of rat plasma lipoprotein. Pharmacol. Toxicol. 79, 293-296.
Schmidt, A. C., Fahlbusch, B., and Otto, M. (2009). Size exclusion chromatography coupled to electrospray ionization mass spectrometry for analysis and quantitative characterization of arsenic interactions with peptides and proteins. J. Mass Spectrom. 44, 898-910.
Scott, S. A., Scott, K., and Blanchard, H. (2007). Crystallization and preliminary crystallographic analysis of recombinant human galectin-1. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63, 967-971.
Seol, J. G., Park, W. H., Kim, E. S., Jung, C. W., Hyun, J. M., Kim, B. K., and Lee, Y. Y. (1999). Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem. Biophys. Res. Commun. 265, 400-404.
Shen, Y., Shen, Z. X., Yan, H., Chen, J., Zeng, X. Y., Li, J. M., Li, X. S., Wu, W., Xiong, S. M., Zhao, W. L., Tang, W., Wu, F., Liu, Y. F., Niu, C., Wang, Z. Y., Chen, S. J., and Chen, Z. (2001). Studies on the clinical efficacy and pharmacokinetics of low-dose arsenic trioxide in the treatment of relapsed acute promyelocytic leukemia: a comparison with conventional dosage. Leukemia 15, 735-741.
Shi, W., Wu, J., and Rosen, B. P. (1994). Identification of a putative metal binding site in a new family of metalloregulatory proteins. J. Biol. Chem. 269, 19826-19829.
Shuvaeva, T. M., Novoselov, V. I., Fesenko, E. E., and Lipkin, V. M. (2009). Peroxiredoxins, a new family of antioxidant proteins. Bioorg. Khim. 35, 581-596.
Silver, S., Ji, G., Broer, S., Dey, S., Dou, D., and Rosen, B. P. (1993). Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol. Microbiol. 8, 637-642.
Smith, A. H., Hopenhayn-Rich, C., Bates, M. N., Goeden, H. M., Hertz-Picciotto, I., Duggan, H. M., Wood, R., Kosnett, M. J., and Smith, M. T. (1992). Cancer risks from arsenic in drinking water. Environ. Health Perspect. 97, 259-267.
Smith, A. H., Lingas, E. O., and Rahman, M. (2000). Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull. World Health Organ. 78, 1093-1103.
Sreerama, N., and Woody, R. W. (2004). On the analysis of membrane protein circular dichroism spectra. Protein Sci. 13, 100-112.
Styblo, M., Hughes, M. F., and Thomas, D. J. (1996). Liberation and analysis of protein-bound arsenicals. J. Chromatogr. B, Biomed. Appl. 677, 161-166.
Styblo, M., and Thomas, D. J. (1997). Binding of arsenicals to proteins in an in vitro methylation system. Toxicol. Appl. Pharmacol. 147, 1-8.
Styblo, M., Yamauchi, H., and Thomas, D. J. (1995). Comparative in vitro methylation of trivalent and pentavalent arsenicals. Toxicol. Appl. Pharmacol. 135, 172-178.
Sunderman, F. W. (1979). Mechanism of metal carcinogens. Biol. Trace Elem. Res. 1, 53-58.
Szinicz, L., and Forth, W. (1988). Effect of As2O3 on gluconeogenesis. Arch. Toxicol. 61, 444-449.
Tabocova, S., Hunter, E. S., 3rd, and Gladen, B. C. (1996). Developmental toxicity of inorganic arsenic in whole embryo: culture oxidation state, dose, time, and gestational age dependence. Toxicol. Appl. Pharmacol. 138, 298-307.
Thiel, T. (1988). Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. J. Bacteriol. 170, 1143-1147.
Tracey, B. M., Feizi, T., Abbott, W. M., Carruthers, R. A., Green, B. N., and Lawson, A. M. (1992). Subunit molecular mass assignment of 14,654 Da to the soluble beta-galactoside-binding lectin from bovine heart muscle and demonstration of intramolecular disulfide bonding associated with oxidative inactivation. J. Biol. Chem. 267, 10342-10347.
Tsuji, A., Kikuchi, Y., Sato, Y., Koide, S., Yuasa, K., Nagahama, M., and Matsuda, Y. (2006). A proteomic approach reveals transient association of reticulocalbin-3, a novel member of the CREC family, with the precursor of subtilisin-like proprotein convertase, PACE4. Biochem. J. 396, 51-59.
Vahter, M., and Marafante, E. (1983). Intracellular interaction and metabolic fate of arsenite and arsenate in mice and rabbits. Chem. Biol. Interact. 47, 29-44.
Vahter, M., and Marafante, E. (1985). Reduction and binding of arsenate in marmoset monkeys. Arch. Toxicol. 57, 119-124.
Vahter, M., Marafante, E., Lindgren, A., and Dencker, L. (1982). Tissue distribution and subcellular binding of arsenic in marmoset mokeys after injection of 74As-arsenite. Arch. Toxicol. 51, 65-67.
Wang, H. F., and Lee, T. C. (1993). Glutathione S-transferase pi facilitates the excretion of arsenic from arsenic-resistant Chinese hamster ovary cells. Biochem. Biophys. Res. Commun. 192, 1093-1099.
Wang, T. C., Huang, J. S., Yang, V. C., Lan, H. J., Lin, C. J., and Jan, K. Y. (1994). Delay of the excision of UV light-induced DNA adducts is involved in the coclastogenicity of UV light plus arsenite. Int. J. Radiat. Biol. 66, 367-372.
Wang, T. S., Kuo, C. F., Jan, K. Y., and Huang, H. (1996). Arsenite induces apoptosis in Chinese hamster ovary cells by generation of reactive oxygen species. J. Cell Physiol. 169, 256-268.
Wang, Y., Feinstein, S. I., Manevich, Y., Ho, Y. S., and Fisher, A. B. (2004). Lung injury and mortality with hyperoxia are increased in peroxiredoxin 6 gene-targeted mice. Free Radic. Biol. Med. 37, 1736-1743.
Warner, M. L., Moore, L. E., Smith, M. T., Kalman, D. A., Fanning, E., and Smith, A. H. (1994). Increased micronuclei in exfoliated bladder cells of individuals who chronically ingest arsenic-contaminated water in Nevada. Cancer Epidemiol. Biomarkers Prev. 3, 583-590.
Williamson, J. R., Chang, K., Frangos, M., Hasan, K. S., Ido, Y., Kawamura, T., Nyengaard, J. R., van den Enden, M., Kilo, C., and Tilton, R. G. (1993). Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42, 801-813.
Winski, S. L., and Carter, D. E. (1995). Interactions of rat red blood cell sulfhydryls with arsenate and arsenite. J. Toxicol. Environ. Health. 46, 379-397.
Wood, J. M. (1974). Biological cycles for toxic elements in the environment. Science 183, 1049-1052.
Yamanaka, K., Hasegawa, A., Sawamura, R., and Okada, S. (1989). Dimethylated arsenics induce DNA strand breaks in lung via the production of active oxygen in mice. Biochem. Biophys. Res. Commun. 165, 43-50.
Yamanaka, K., Hoshino, M., Okamoto, M., Sawamura, R., Hasegawa, A., and Okada, S. (1990). Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem. Biophys. Res. Commun. 168, 58-64.
Yan, H., Wang, N., Weinfeld, M., Cullen, W. R., and Le, X. C. (2009). Identification of arsenic-binding proteins in human cells by affinity chromatography and mass spectrometry. Anal. Chem. 81, 4144-4152.
Zhang, T., Wang, S. S., Hong, L., Wang, X. L., and Qi, Q. H. (2003). Arsenic trioxide induces apoptosis of rat hepatocellular carcinoma cells in vivo. J. Exp. Clin. Cancer Res. 22, 61-68.
Zhang, T. C., Cao, E. H., Li, J. F., Ma, W., and Qin, J. F. (1999). Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur. J. Cancer 35, 1258-1263.
Zhang, X., Yang, F., Shim, J. Y., Kirk, K. L., Anderson, D. E., and Chen, X. (2007). Identification of arsenic-binding proteins in human breast cancer cells. Cancer Lett. 255, 95-106.
Zhou, L., Jing, Y., Styblo, M., Chen, Z., and Waxman, S. (2005). Glutathione-S-transferase pi inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood 105, 1198-1203.
指導教授 黃榮南、高永旭
(Rong-Nan Huang、Yung-Hsi Kao)
審核日期 2012-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明