博碩士論文 942406004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.18.3
姓名 邱華恭(Hua-Kung Chiu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 布拉格式反射鏡中空光波導之研究
(Study of Bragg Reflector Hollow Optical Waveguides)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,我們利用非晶矽及二氧化矽(Si/SiO2)、氮化矽及二氧化矽(Si3N4/SiO2)以週期性排列的方式組成一個高反射之布拉格反射鏡,再利用此高反射鏡以包覆空氣的方式形成中空光波導。在設計過程中,我們將會利用色散曲線與傳遞矩陣分析此反射鏡之特性。在設計完中空光波導之後,我們設計了兩種中空光波導元件,分別為中空轉角光波導及中空濾波光波導。在中空轉角光波導元件中,我們設計了兩種不同類形之轉角器,分別為截角式及弧形式轉角波導,並用有限時域差分法計算及分析此轉角光波導之傳導性,最後再利用半導體製程的方式製作出中空轉角光波導元件並量測及分析其結果,其中空弧型轉角波導最小之轉角損耗為:BLEy=3.5 Db、BLHy=6.4 dB;截角式轉角光波導的最小之轉角損耗為:BLEy=1.0 dB、BLHy=0.8 dB,由此可知截角式之轉角器有較低之轉角損耗,並且有較小元件尺寸之特性。而在中空濾波光波導元件中,我們在非晶矽及二氧化矽所組成之布拉格反射鏡中插入一個矽缺陷,使此高反射鏡之反射光譜中產生一個缺陷態,而此缺陷態所產生之濾波波長可由缺陷層之厚度改變,我們可利用傳遞矩陣計算出此特性。在設計完此元件後,我們利用半導體製程的方式製作出中空濾波光波導元件並量測及分析此元件,此元件可有效的將波導內特定波長的光濾除,且有窄的濾波頻寬之特性。
摘要(英) In this thesis, the hollow waveguide devices are composed of Bragg reflector mirrors which constituted by the amorphous silicon (a-Si) and silicon dioxide (SiO2) or silicon nitride (Si3N4) and silicon dioxide (SiO2). The Bloch theorem and transfer matrix are used to simulate the dispersion relation (or band structure) of Bragg reflectors which constitute the hollow waveguide devices. In 90o bent waveguides device, two types of 90o bent hollow waveguide (arc-type and cut-type) are presented theoretically and experimentally. We used the two-dimensional finite-difference time-domain method to simulate bending transmission efficiencies for arc- and cut-type 90o bent waveguides. The lowest 90 degree bending losses are around BLEy=3.5 dB、BLHy=6.4 dB for the arc-type bending waveguides and BLEy=1.0 dB、BLHy=0.8 dB for cut-type bending waveguides, respectively. This waveguide demonstrates a possibility for higher density of integration in planar light wave circuits.
In filter waveguide device, this thesis describes a theoretical and experimental study of wavelength-selective filter derived from hollow optical waveguides which composed of Bragg reflectors, constituted by the a-Si and SiO2, with a-Si defect layers on silicon substrate. The defect states of transmission filter can be tuned with the different thicknesses of defect layer. The device exhibited the narrow bandwidth of 0.5 and 1.1 nm for wavelengths of 1571 and 1519 nm, respectively.
關鍵字(中) ★ 中空濾波光波導
★ 中空轉角光波導
★ 中空光波導
關鍵字(英) ★ hollow bent waveguides
★ hollow waveguides
★ hollow filter waveguides.
論文目次 摘要 I
謝誌 IV
目錄 V
圖目錄 VIII
第一章 簡介 1
1.1 光波導 1
1.2 光子晶體 4
1.3 中空光波導 7
1.4 轉角波導 13
1.5 濾波器 14
1.6 結論 16
第二章 中空波導設計原理 18
2.1 分佈式布拉格反射器 18
2.2 布洛赫波與能帶結構 22
2.3 傳遞矩陣法 26
2.4 有限時域差分法 31
2.5 結論 34
第三章 中空式轉角光波導 36
3.1 中空式轉角光波導之模擬 36
3.2 中空式轉角波導之製作 44
3.3 中空式轉角波導之特性量測與分析 49
3.4 結論 53
第四章 中空式濾波光波導 57
4.1 中空式濾波光波導之設計及模擬 57
4.2 中空式濾波光波導之製作 71
4.3 中空式濾波光波導之特性量測 72
4.4 結論 57
第五章 結論與未來工作 79
5.1 結論 79
5.1.1 中空式90o轉角光波導 79
5.1.2 中空式濾波光波導 82
5.2 未來工作 85
5.2.1 中空式方向耦合器 85
5.2.2 中空慢光光波導 87
附錄 91
參考文獻 93
研究著作 97
參考文獻 [1] S. E. Miller, "Integrated optics: an introduction.," Bell Syst. Tech. J., vol. 48 (7), pp. 2059-2068, 1969.
[2] N. Savage, “Linking with Light,” IEEE Spectr., vol.39, pp. 32-36, 2002.
[3] H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express, vol. 17, pp. 24250-24260, 2009.
[4] C. T Chen, “4-Channel×10-Gbps Optical Interconnect Receiving Module Based on Silicon Optical Bench,” 國立中央大學, 光電科學研究所, 2009.
[5] T. Hino, R. Kuribayashi, Y. Hashimoto, T. Sugimoto, J. Ushioda, J. Sasaki, I. Ogura, I. Hatakeyama, and K. Kurata, “A 10 Gbps x 12 channel pluggable optical transceiver for high-speed interconnections,” IEEE Electronic Components and Technology Conference, pp. 1838-1843, 2008.
[6] C. Pollock, and M. Lipson: Integrated Photonics, Kluwer Academic. Publishers, 2003.
[7] G. Z. Xiao, P. Zhao, F. G. Sun, Z. G. Lu, Zhiyi Zhang, and C. P. Grover, “Interrogating fiber Bragg grating sensors by thermally scanning a demultiplexer based on arrayed waveguide gratings,” Opt. Lett., vol. 29, pp. 2222-2224, 2004.
[8] L. B. Soldano, and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Tech., vol. 13, pp. 615-627, 1995.
[9] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulato,” Electron. Lett., vol. 31, pp. 2097-2098, 1995.
[10] C. Z. Zhao, G. Z. Li, E. K. Liu, Y. Gao, and X. D. Liu, “Silicon on insulator Mach-Zehnder waveguide interferometers operating at 1.3 μm,” Appl. Phys. Lett., vol. 67 (17), pp. 2448-2249, 1995.
[11] J. D. Joannopoulos, S. G. Johnson, J. N. Winn et al., Photonic Crystals - Molding the Flow of Light, Second Edition, Princeton University Press,41 William Street, Princeton, New Jersey 08540, 2008.
[12] M. H. MacDougal, H. Zhao, P. D. Dapkus, M. Ziari, and W. H. Steier, “Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers,” Electron. Lett., vol. 30, pp. 1147-1149, 1994.
[13] D. W. Prather, J. Murakowski, S. Shi, S. Venkataraman, A. Sharkawy, C. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic- crystal waveguide,” Opt. Lett., vol. 27, pp. 1601-1603, 2002.
[14] H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science, vol. 305, pp. 1444-1447, 2004.
[15] K. N. Hui, W. Y. Fu,W. N. Ng, C. H. Leung, P. T. Lai, K. K. Y. Wong, and H. W. Choi, “Polychromatic light-emitting diodes with a fluorescent nanosphere opal coating,” Nanotechnology, vol. 19, pp. 355203, 2008.
[16] E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
[17] S. John, “Strong localization of photons in certain disordered dielectric superlattics,” Phys. Rev. Lett., vol. 58, pp. 2486-2488, 1987.
[18] http://www.lostseaopals.com.au/opals/index.asp
[19] http://www.cmth.ph.ic.ac.uk/photonics/intro/
[20] E. Pennisi, “Naturalists' Surveys Show That British Butterflies Are Going, Going,” Science, vol. 303, pp. 1747, 2004.
[21] L. P. Biro´, Z. Ba´lint, K. Kerte´sz et al., “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair,” Phys. Rev. E, vol. 67, pp. 021907, 2003.
[22] H. T. Chien, C. Lee, H. K. Chiu, K. C. Hsu, C. C. Chen, J. A. Ho, and C. Chou, "The Comparison Between the Graded Photonic Crystal Coupler and Various Couplers," J. Lightwave Technol., vol. 27, pp. 2570-2574, 2009.
[23] T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic Crystal Lens: From Negative Refraction and Negative Index to Negative Permittivity and Permeability,” Phys. Rev. Lett., vol. 97, 073905, 2006.
[24] C. C. Chen, H. D. Chien, and P. G. Luan, “Photonic crystal beam splitters,” Appl. Opt. vol. 43, pp. 6187-6190, 2004.
[25] H. T. Chien, C. C. Chen, and P. G. Luan, "Photonic crystal beam splitters," Opt. Commun., vol. 259, pp. 873-875, 2006.
[26] A. Yariv, and P. Yeh, “Optical waves in crystals,” Wiley, New York, Chap.6, 2004.
[27] H. M. Ng, D. Doppalapudi, E. Iliopoulos, and T. D. Moustakas, “Distributed Bragg reflectors based on AlN/GaN multilayers,” Appl. Phys. Lett., vol. 74, pp. 1036-1038, 1999.
[28] H. M. Ng, T. D. Moustakas, and S. N. G. Chu, “High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy,” Appl. Phys. Lett., vol. 76, pp. 2818-2820, 2000.
[29] Y. K. Choi, Y. K. Ha, J. E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun., vol. 230, pp. 239-243, 2004.
[30] R. W. Stanley, and K. L. Andrew, ”Use of dielectric coating in absolute wavelength measurements with a Fabry-Perot interferometer,” J. Opt. Soc. Am., vol. 54, pp. 625-627, 1964.
[31] S. A. Kumar, C. L. Nagendra, H. G. Shanbhogue, and G. K. M. Thutupalli, ”Near-infrared bandpass filters from Si/SiO2 multilayer coating,” Opt. Eng., vol. 38, pp. 368-380, 1999.
[32] O. Svelto, and D.C. Hanna, “Principles of lasers”, 3rd Ed., Plenum Press, New York, 1989.
[33] E. A. J. Marcatili, and R. A. Schmeltzer, "Hollow metallic and dielectric waveguide for long distance optical transmission and laser," Bell Syst. Tech. J., vol. 43, pp. 1783-1809, 1964.
[34] J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt., vol. 19, pp. 211-217, 2000.
[35] M. Mohebbi, R. Fedosejevs, V. Gopal, and J. A. Harrington, "Silver-coated hollow-glass waveguide for applications at 800 nm," Appl. Opt., vol. 41 (33), pp. 7031-7035, 2002.
[36] P. Yeh, A. Yariv, and E. Marom, “Statistical analysis of Bragg reflectors,” J. Opt. Soc. Am., vol. 68, pp.1196-1202,1978.
[37] N. J. Doran, and K. J. Bulow, “Cylindrical Bragg fibers: A design and feasibility study for optical communications,” J. Lightwave Technol., vol. 1, pp. 588-590, 1983.
[38] B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, "Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission," Nature, vol. 420 (6916), pp. 650-653, 2002.
[39] E. Pone, C. Dubois, N. Guo, Y. Gao, A. Dupuis, F. Boismenu, S. Lacroix, and M. Skorobogatiy, "Drawing of the hollow all-polymer Bragg fibers," Opt. Express, vol. 14, pp. 5838-5852, 2006.
[40] G. Bouwmans, F. Luan, J. C. Knight, and P. St. J. Russell, “Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,” Opt. Express, vol. 11, pp. 1613-1620, 2003.
[41] C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fiber,” Nature, vol. 424, pp. 657-659, 2003.
[42] R. Bernini, S. Campopiano, L. Zeni, and P. M. Sarro, “ARROW optical waveguides based sensors,” Sens. Actuators B: Chemical, vol. 100, pp. 143-146, 2004.
[43] J. P. Barber, D. B. Conkey, J. R. Lee, N. B. Hubbard, L. L. Howell, H. Schmidt, and A. R. Hawkins, “Fabrication of Hollow Waveguides with Sacrificial Aluminum Cores,” IEEE Photon. Technol. Lett., vol. 17, pp. 363-365, 2005.
[44] D. Yin, J. Barber, A. Hawkins, and H. Schmidt, Waveguide loss optimization in hollow-core ARROW waveguides,” Opt. Express, vol. 13, pp. 9331-9336, 2005.
[45] D. Yin, Holger Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express, vol. 12, pp. 2710-2715, 2004.
[46] D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Integrated optical waveguides with liquid cores,” Appl. Phys. Lett., vol. 85, pp. 3477-3479, 2004.
[47] S. S. Lo, H. K. Chiu, and C. C. Chen, ”Fabricating lower loss hollow optical waveguide via amorphous silicon bonding using dilute KOH solvent,” IEEE Photon. Technol. Lett., vol. 17, pp. 2592-2594, 2005.
[48] S. S. Lo, M. S. Wang, and C. C. Chen, "Semiconductor hollow optical waveguides formed by omni-directional reflectors," Opt. Express, vol. 12, pp. 6589-6593, 2004.
[49] S. S. Lo, and C. C. Chen, “Air-core hollow optical waveguides with omnidirectional reflectors,” Opt. Eng. vol. 45, 044601, 2006.
[50] S. S. Lo, C. C. Chen, S. C. Hsu, and C. Y. Liu, “Fabricating hollow optical waveguide for optical communication application,” IEEE J. MEMS., vol. 15, pp. 584-587, 2006.
[51] S. S. Lo, and C. C. Chen, “1x2 multimode interference couplers based on semiconductor hollow waveguides formed from omnidirectional reflectors,” Opt. Lett., vol. 32, pp. 1803-1805, 2007.
[52] M. A. Duguay, Y. Kokubun, T. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2 - Si multilayer structures,” Appl. Phys. Lett., vol. 49, pp. 13-15, 1986.
[53] J. R. Lee, J. P. Barber, Z. A. George, M. L. Lee, H. Schmidt, and A, R. Hawkins, "Microchannels with rectangular and arched core shapes fabricated using sacrificial etching," J. Micro/Nanolith. MEMS MOEMS, vol. 6, 013010, 2007.
[54] J. P. Barber, E. J. Lunt, Z. A. George, D. Yin, H. Schmidt, and A. R. Hawkins, “Integrated hollow waveguides with arch-shaped cores,” IEEE Photon. Technol. Lett., vol. 18, pp. 28-30, 2006.
[55] R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, M. M. Pai, and T. J. Clement, "Guided self-assembly of integrated hollow Bragg waveguides," Opt. Express, vol. 15 (7), pp. 3902-3915, 2007.
[56] Y. Qian, S. Kim, J. Song, G. P. Nordin, and J. Jiang, "Efficient and compact silicon-on-insulator rib waveguide 90 degree bends and splitters," Proc. SPIE 6477, 64770I, 2007.
[57] J. Cai, G. P. Nordin, S. Kim, and J. Jiang, "Three-Dimensional Analysis of a Hybrid Photonic Crystal-Conventional Waveguide 90° Bend," Appl. Opt., vol. 43, pp. 4244-4249, 2004.
[58] L. Li, G. Nordin, J. English, and J. Jiang, "Small-area bends and beamsplitters for lowindex-contrast waveguides," Opt. Express, vol. 11, pp. 282-290, 2003.
[59] R. Espinola, R. Ahmad, F. Pizzuto, M. Steel, and R. Osgood, "A study of high-index-contrast 90 degree waveguide bend structures," Opt. Express, vol. 8, pp. 517-528, 2001.
[60] K. Okamoto, K. Moriwaki, and S. Suzuki, "Fabrication of 64×64 arrayed- waveguide grating multiplexer on silicon," Electron. Lett., vol. 31, pp. 184-186, 1995.
[61] A. N. Miliou, R. Srivastava, R. V. Ramaswamy, "A 1.3 μm directional coupler polarization splitter by ion exchange," J. Lightwave Tech., vol. 11, pp. 220-225, 1993.
[62] M. K. Chin, C. Youtsey, W. Zhao, T. Pierson, Z. Ren, S. L. Wu, L. Wang, Y.G. Zhao, S. T. Ho, "GaAs microcavity channel-dropping filter based on a race-track resonator," IEEE Photon. Technol. Lett., vol. 11, pp. 1620-1622, 1999.
[63] Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325-327, 2005.
[64] Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, "12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators," Opt. Express, vol. 15, pp. 430-436, 2007.
[65] C. H. Chen, C. H. Lee, and T. H. Lin, "Loss-reduced photonic liquid-crystal fiber by using photoalignment method," Appl. Opt., vol. 49, pp. 4846-4850, 2010.
[66] C. H. Lee, C. H. Chen, C. L. Kao, C. P. Yu, S. M. Yeh, W. H. Cheng, and T. H. Lin, "Photo and electrical tunable effects in photonic liquid crystal fiber," Opt. Express, vol. 18, pp. 2814-2821, 2010.
[67] B. S. Phillips, P. Measor, Y. Zhao, H. Schmidt, and A. R. Hawkins, “Optofluidic notch filter integration by lift-off of thin films,” Opt. Express, vol. 18, pp. 4790-4795, 2010.
[68] P. Yeh, A. Yariv, and C-S Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am., vol. 67, pp. 423-438, 1977.
[69] 欒丕綱、陳啟昌, ”光子晶體-從蝴蝶翅膀到奈米光子學,” (五南圖書出版股份有限公司, 2006) pp.144-160.
[70] 李正中, “薄膜光學與鍍膜技術,” (藝軒圖書出版示, 2006), pp. 9-17.
[71] A. Taflove, and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Baker & Taylor Books, 2000.
[72] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, 1996.
[73] K. K. Kawano, and Tsutomu, “Introduction to optical waveguide analysis: Solving Maxwell's equation and the Schrödinger equation," (John Wiley & Sons, 2001).
[74] B. E. A. Saleh, and M. C. Teich, “Fundamentals of photonics,” (Weily, 1991).
[75] http://refractiveindex.info/?group=CRYSTALS&material=Si3N4.
[76] S. S. Lo, and C. C. Chen, “High finesse of optical filter by a set Fabry-Perot cavity,” J. Opt. Soc. Am. B, vol. 24, pp. 1853-1856, 2007.
[77] 羅仕守, “Fabrication and application of novel hollow optical waveguides,” 國立中央大學, 光電科學研究所, 2005.
[78] M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron., vol. 38, pp. 736-742, 2002.
[79] H. K. Chiu, C. M. Hsu, S. S. Lo, C. C. Chen, and C. C. Lee, "Sharply Bent Hollow Optical Waveguides Formed by Omni-Direction Reflector," J. Phys. D: Appl. Phys., vol. 42, 195106, 2009.
[81] E. D. Palik, Handbook of Optical Constants of Solids _Academic, San Diego, 1985.
[80] H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, “Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55 μm,” Appl. Phys. Lett., vol. 81, pp. 4502-4504, 2002.
[81] L. H. Frandsen, A. V. Lavrinenko, J. F. Pedersen, and P. I. Borel, "Photonic crystal waveguides with semi-slow light and tailored dispersion properties," Opt. Express, vol. 14, pp. 9444-9450, 2006.
[82] T. BaBa, “Slow light in photonic crystals,” Nat. Photonics, vol. 2, pp. 465-473, 2008.
[83] Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature, vol. 438, pp. 65-69, 2005.
[5-4=3-2] S. S. Lo, and C. C. Chen, “High finesse of optical filter by a set Fabry-Perot cavity,” J. Opt. Soc. Am. B, vol. 24, pp. 1853-1856, 2007.
指導教授 陳啟昌(Chii-Chang Chen) 審核日期 2011-6-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明