博碩士論文 942406012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.15.193.45
姓名 郭奇文(Chi-wen Kuo)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以有機金屬化學氣相沉積法成長氮化物藍光發光二極體與其光電特性研究
(The Optoelectronic Characteristics of Nitride-Based Light Emitting Diode Grown by Metal-organic Chemical Vapor Deposition)
相關論文
★ 紫外光發光二極體製程技術與元件特性研究★ 網狀電極應用在氮化物紫外光光偵測器之研究
★ 不同電流阻障層對氮化鎵發光二極體之光電特性研究★ 具網狀結構之紫外光發光二極體之特性研究
★ 氧化鋅鎵之透明導電薄膜材料特性與其應用在氮化鎵發光二極體上之研究★ 氮化鎵薄膜成長於奈米級圖樣化氮化鎵基板之研究
★ 氧化鋅鋁透明導電薄膜的熱穩定性於氮化鎵藍色發光二極體之研究★ 氮化物藍光發光二極體及太陽能電池之光電特性研究
★ 具有倒金字塔側壁之氮化鎵發光二極體的製作★ 應用氮化鎵奈米柱基板提升氮化鎵發光二極體之電流擴散
★ 圖案化二氧化矽奈米柱結構應用於氮化鎵發光二極體之研究★ 利用陽極氧化法製備奈米結構圖案化藍寶石基板之研究
★ 二氧化矽奈米柱結構應用於氮化銦鎵太陽能電池元件之研究★ 以氫化物氣相磊晶法成長氮化鎵厚膜於氮化鎵奈米柱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用有機金屬氣相沉積法(Metal-organic Chemical Vapor Deposition)成長氮化物材料,並針對氮化物光電半導體材料特性與元件特性進行分析與探討,研究內容主要以氮化鎵薄膜與氮化物藍光發光二極體(Nitride-based Blue LED)為主,包含開發新式緩衝層結構、奈米尺寸基板之懸空磊晶技術(pendeo-expitaxy)研究與改變氮化物藍光發光二極體晶粒幾何結構之製程開發。
首先在緩衝層研究上,我們開發出新式緩衝層-氮化鎂/氮化鋁 (MgxNy/AlN)雙層緩衝層(buffer layer)結構,並藉由此緩衝層結構特性來降低錯位(dislocation)的產生,由X-ray分析及霍爾量測結果得知使用氮化鎂/氮化鋁雙層緩衝層確實可提升氮化鎵薄膜品質,利用計算腐蝕坑密度 (etching pits density, EPD),可知其錯位缺陷密度可有效地由傳統使用低溫氮化鋁緩衝層~3.7×108 cm-2降低至9.0×107 cm-2。
懸空磊晶技術方面,打破一般傳統懸空磊晶技術需要曝光顯影(lithography)製程,利用鎳(Ni)當金屬蝕刻遮罩(metal hard mask),製作出具高深寬比之氮化鎵奈米柱基板(nano-rod GaN template, NR GaN template),藉由調整磊晶成長條件,直接將不具緩衝層結構之氮化鎵薄膜成長於此氮化鎵奈米柱基板,由霍爾量測與X-ray分析結果判斷,相較於傳統利用緩衝層成長氮化鎵薄膜,此懸空磊晶法成長氮化鎵薄膜於氮化鎵奈米柱基板確實可獲得較佳品質,計算其腐蝕坑密度(etching pits density, EPD),發現錯位密度可減少至1.9 × 108 cm-2,接續此實驗,更進一步將n-GaN/MQW/p-GaN LED結構直接成長於氮化鎵奈米柱基板,節省了緩衝層與無摻雜氮化鎵層磊晶時間,比較傳統發光二極體(conventional LED, C LED)與成長於氮化鎵奈米柱基板之發光二極體( NR LED),由其光電特性量測結果來看,NR LED在電性上與C LED無太大差異,在20 mA注入電流下之驅動電壓約3.30 V,同時,NR LED光輸出功率比C LED提升約39.8%,其中光輸出功率提升的主因,大致分成內部量子效率與光萃取能力兩方面探討。以光萃取能力而言,因懸空磊晶技術成長易形成空隙(void),此空隙影響的折射率變化增強了光散射效果,進而提升了光萃取率;另一方面,透過變溫光致螢光(Photoluminescence : PL)量測結果,發現NR LED內部量子效率16.9%高於傳統LED14.9%,此為另一影響光輸出功率的因素。
最後針對提升LED光萃取效率,著力於改變LED晶粒幾何結構,有效運用了氮化鎵N-face高化學活性特性,開發不需曝光顯影製程的濕式酸蝕刻方式,過程中將晶粒製程後的LED鍍上SiO2當蝕刻遮罩層,接續浸泡於攝氏250度硫酸:磷酸=3:2混合酸液中4分鐘,此時LED晶粒四周被蝕刻出倒金字塔結構,最後利用氫氟酸與氟化銨(HF/NF4H)混合成之緩衝溶液(Buffered Oxide Etchant, BOE)除去殘餘SiO2,完成具有倒金字塔結構LED晶粒製程 (inverted pyramid sidewalls LED, IPS LED),由光特性量測結果發現,相較於傳統LED而言,IPS LED光輸出功率上提升了約27%,進一步探究其原因,透過中央大學武茂仁老師實驗室提供協助,利用finite-difference time-domain (FDTD)模擬此倒金字塔結構對光輸出功率的影響,發現倒金字塔結構具有較佳的光子侷促能力,其模擬結果說明光輸出功率可增強24%,此模擬數據與實際結果27%也十分相近;另一方面,利用光功率密度量測,發現IPS LED晶粒四周圍繞著一圈光環,此光圈強度明顯高於傳統LED晶粒四周的強度,此結果也與模擬的結果相呼應,充分說明倒金字塔結構的確能提升光輸出功率。
摘要(英) Through metal-organic chemical vapor deposition (MOCVD) to grow nitride-based materials, this dissertation mainly analyzes the characteristics of the nitride-based materials and optoelectronic semiconductor. The research focuses on GaN film and nitride-based blue LED, including advanced buffer layers, pendeo-expitaxy on nano-scaled template, and the development of nitride-based blue LED with the geometric sidewalls.
On one hand, we developed a double buffer layers- MgxNy/AlN. Judging from the result of X-ray analysis and Hall measurement, the high quality GaN could be obtained by the features of these buffer layers to reduce dislocation. Compared with GaN on conventional AlN buffer layer and MgxNy/AlN double buffer layers, the dislocation density of GaN film can be effectively reduced from 3.7×108 cm-2 to 9.0×107 cm-2 from the result of etching pits density (EPD).
On the other hand, we broke fresh ground in pendeo-expitaxy without lithographic process. We produced nano-rod GaN template (NR GaN template), with high aspect ratio by Ni as metal hard mask. By adjusting the growing condition, GaN was directly grown on NR GaN template without buffer layers. Judging from the result of Hall measurement and X-ray analysis, implementing pendeo-expitaxy to grow GaN film on the NR GaN template can acquire better quality. From result of EPD, the dislocation density of GaN film could be reduced to 1.9×108 cm-2 by using NR GaN template. In addition, the following experiment makes further research on n-GaN/MQW/p-GaN LED structure directly grown on the NR GaN template. This has been profited by saving growth time of buffer layer and unintentionally doped GaN layer when LED structure was grown on nano-rod GaN template. In terms of the optoelectronic characteristics, there are no obvious differences in electronic properties between NR LED and C LED. The forward voltage is around 3.30V under the electronic current at a 20mA injection; in the meanwhile, the output power of NR LED promotes about 39.8% more than the C LED. The main factor in enhancing the light output power is focused on light extraction and internal quantum efficiency. Not only does the growth of pendeo-expitaxy form the void between the GaN/sapphire interface which increases the effects upon light scattering for light extration, but also the efficiency of internal quantum in NR LED up to 16.9% higher than in C LED which is only about 14.9%.
Last but not least, we enhance the light extraction efficiency of LED by making changes in geometric structure of LED chip die. We applied the feature of high chemical activity of GaN N-face and developed wet etching without lithographic process to change the sidewall of LED chip die. After the chip process, LED was deposited with SiO2 as hard mask, and then soaked in the mixed acid H2SO4 : H2PO4 = 3 : 2 at 250 oC for four minutes. After this wet etching process, the edge of LED chip die was etched as inverted pyramid structure. Finally, the residue of SiO2 was removed by utilizing buffered oxide etchant (BOE) to complete the fabrication of inverted pyramid sidewalls LED (IPS LED). Compared to conventional LED, it was found that the light output power of IPS LED has enhanced about 27% through the measurement of light characteristics. To go a step further, with the help of Prof. Wu in National Central University, it was found that inverted pyramid structure performs better on confined photons judging from the simulation of by finite-difference time-domain (FDTD). This statistics 24 % is similar to the practical result which reaches to 27%. Further, by taking advantage of the measurement of light power density, a light rectangle was discovered around the edge of IPS LED chip die. The intensity of the light rectangle is obviously higher than the conventional LED. This result responds to the stimulated statistics as well as interprets that inverted pyramid structure can indeed enhance light output power.
關鍵字(中) ★ 奈米柱氮化鎵基板
★ 藍光
★ 發光二極體
★ 氮化鎵
關鍵字(英) ★ Nano-rod GaN
★ Buffer layer
★ Blue LED
★ GaN
★ IPS LED
論文目次 摘要 i
Abstract ii
致謝 iii
Contents v
List of Tables vii
List of Figures Captions viii
Chapter 1 Introduction
1.1 Background 1
Chapter 2 Introduction of Metal-organic Vapor Phase Epitaxy System
2.1 Introduction 12
2.2 Close-Coupled Showerhead Technology 15
2.3 In Situ Monitoring of Epitaxy Growth 17
Chapter 3 Influence of MgxNy/AlN Double Buffer Layers in GaN Epilayer
3.1 Introduction 32
3.2 Experimental Procedure 35
3.3 Characteristics of Unintentionally Doped GaN with Double MgxNy/AlN Buffer Layers 37
3.4 Summary 40
Chapter 4 High Efficiency Nitride-based Blue LED Grown on Nano-rod GaN Template
4.1 Introduction 59
4.2 The Fabrication of Nano-rod GaN Template 61
4.3 Characteristics of Unintentionally Doped GaN epitaxial layer Grown on Nano-rod GaN Template 62
4.4 Characteristics of GaN-based Light-Emitting Diode Grown on Nano-rod GaN Template 64
4.5 Summary 68
Chapter 5 High Light Extraction of Nitride-based Blue LED with Inverted Pyramid Sidewalls
5.1 Introduction 90
5.2 The Fabrication of GaN-based LED 92
5.3 The Experiment Procedure 93
5.4 Characteristics of Nitride-based Light-emitting Diodes with Inverted Pyramid Sidewalls 95
5.5 Summary 100
Chapter 6 Conclusions and Future Works
6.1 Conclusions 123
6.2 Future Works 124
Publication List
參考文獻 [1] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., Vol. 38, 3976 (1999).
[2] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., Vol. 70, 1417 (1997).
[3] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem. Chem., Vol. 234, 282 (1940).
[4] H. P. Maruska, and J. J. Tietjen, Appl. Phys. Lett., Vol. 15, 367 (1969).
[5] J. Pankove, E. Miller, D. Richmann, and J. Berkeyheiser, J. Lumin., Vol. 4, 63 (1971).
[6] R. Dingle, K. Shaklee, R. Leheny, and R. Zetterstrom, Appl. Phys. Lett., Vol. 19, 5 (1971).
[7] I. Akasaki, Mater., Res. Soc. Symp., Vol. 510, 145 (1998).
[8] H. Manasevit, F. Erdman, and W. Simpson, J. Electrochem. Soc., Vol. 118, 1864 (1971).
[9] T. Kawabata, T. Matsuda, and S. Koike, J. Appl. Phys., Vol. 56, 2367 (1984).
[10] H. Amano, N. Sawaki, and I. Akasaki, Appl. Phys. Lett., Vol. 48, 353 (1986).
[11] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., Vol. 28, L2112 (1989).
[12] S. Nakamura, Jpn. J. Appl. Phys., Vol. 30, L1705 (1991).
[13] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., Vol. 31, L139 (1992).
[14] T. Nishida, H.Saito, and N. Kobayashi, Appl. Phys. Lett., Vol. 79, 711 (2001).
[15] H. X. Wang, H. D. Li, Y.B. Lee, H. Sato, K. Tamashita, T. Sugahara, and S. Sakai, J. Cryst. Growth, Vol. 264, 48 (2004).
[16] T. Wang, Y. H. Liu, Y. B. Lee, J. P. Ao, J. Bai, and S. Sakai, Appl. Phys. Lett., Vol. 81, 2508 (2002).
[17] M. Iwayal, S. Terao, S.Takanami, A.Miyazaki, S. Kamiyama, H. Amano, and I. Akasaki, Phys. Stat. Sol. (C), Vol. 1, 34 (2002).
[18] T. Nishida, N. Kobayashi, and T. Ban, Appl. Phys. Lett., Vol. 82, 1 (2003).
[19] S.Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers. (Springer, Berlin, 1997).
[20] S. H. Yen, Thesis "Numerical investigation of improvement in piezoelectric effect of violet InGaN laser diodes", National Chang-Hua University of Education, Jun. 2008.
[21] S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, Appl. Phys. Lett., Vol. 74, 1460 (1999).
[22] S. Figge, T. BoK ttcher, S. Einfeldt, D. Hommel , J. Cryst. Growth, Vol. 221, 262 (2000).
[23] S. Nakamura, Senoh M, S. I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. Vol. 72, 211 (1998).
[24] J. Z. Domagala, Z. R. Zytkiewicz, B. Beaumount, J. Kozlowski, R. Czernetzki, P. Prystawko, and M. Leszczynski, J. Cryst. Growth, Vol. 245, 37 (2002).
[25] X. A. Cao, S. F. LeBoeuf, M. P. D'Evelyn, S. D. Arthur, J. Kretchmer, C. H. Yan, and Z. H. Yang, Appl. Phys. Lett. Vol. 84, 4313 (2004).
[26] D. S. Wuu, H. W. Wu, S. T. Chen, T. Y. Tsai, X. Zheng, and R. H. Horng, J. Cryst. Growth, Vol. 311, 3063 (2009).
[27] K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, J. Cryst. Growth, Vol. 115, 628 (1991).
[28] A. Usui, H. Sunakawa, A. Sakai and A. A. Yamaguchi, Jpn. J. Appl. Phys., Vol. 6, L889 (1997).
[29] O. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett., Vol. 71, 2638 (1997).
[30] T. Mukai, K. Takekawa, and S. Nakamura, Jpn. J. Appl. Phys., Vol. 37, L839 (1998).
[31] I. H. Kim, C. Sone, O. H. Nam, Y. J. Park, and T. Kim, Appl. Phys. Lett., Vol. 75, 4109 (1999).
[32] S. Sakai, T. Wang, Y. Morishima, and Y. Naoi, J. Cryst. Growth, Vol. 221, 334 (2000).
[33] K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith D. Batchelor, and R. Davis, Appl. Phys. Lett., Vol. 75, 196 (1999).
[34] I. H. Kim, C. Sone, O. H. Nam, Y. J. Park, and T. Kim, Appl. Phys. Lett., Vol. 75, 4109 (1999).
[35] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., Vol. 84, 855(2004).
[36] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, IEEE Photon. Tech. Lett., Vol. 18, 1512 (2006).
[37] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, IEEE Electron. Devices Lett., Vol. 52, 2346 (2005).
[38] S. J. Chang, C. S. Chang, Y. K. Su, R. W. Chuang, W. C. Lai, C. H. Kuo, Y. P. Hsu, Y. C. Lin, S. C. Shei, H. M. Lo, J. C.Ke, and J.K. Sheu, IEEE Photon. Technol. Lett., Vol. 16, 1002 (2004).
[39] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, Jpn. J. Appl. Phys., Vol. 41, L1431 (2002).
[40] D. S. Han, J. Y. Kim, S. I. Na, S. H. Kim, K. D. Lee, B. Kim, and S. J. Park, IEEE Photon. Technol. Lett., Vol. 18, 1406 (2006).
[41] Bernard Gil, "Group III Nitride Semiconductor Compound", 33, Clarendon, Press, Oxford (1988).
指導教授 郭政煌(Cheng-huang Kuo) 審核日期 2010-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明