博碩士論文 943202006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.19.31.73
姓名 徐鍇(Kai Hsu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以桁架模式分析鋼筋混凝土抗彎構架行為之研究
(Investigation on RC Moment-Resisting Frames by means of Truss Model Analysis)
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究與日本東京工業大學Niwa教授及助手Miki博士進行國際研究合作,採用其開發之桁架模型分析程式3D Lattice model進行含梁柱抗彎構架之分析。
本文內容包含分析程式Lattice model之介紹,參數分析及實驗驗證。藉由參數分析,乃將原始分析程式修改,以適合預測RC抗彎構架行為。在參數分析部分,包含分析構架可選定多種材料性質、混凝土軟化係數選取、梁對接頭造成的圍束效果,以及對接頭勁度進行折減等探討。
文末利用四座含底層之梁柱抗彎實驗構架及一座兩層兩跨抗彎實驗構架,進行實驗與分析結果比較。從中,可以發現無論在整體抗彎構架行為與柱及接頭細部行為,利用本修正後之程式作分析,都有不錯的成果。
本研究亦發現後續研究問題,如分析之結構初始勁度高於實驗值、接頭勁度折減改良、拱桿件角度之限制等,亦有待未來作深入探討。
摘要(英) The research has been cooperated with Professor Niwa and Dr. Miki from Tokyo Institute of Technology in Japan since March 2006. The target of the research is to examine the analytical ability of the computed program, 3D Lattice model, developed by Niwa group, and to verify the prediction accuracy of moment-resisting frames by means of a series of experimental results. The main structure of 3D lattice model program was made in association with the calculation method of structural matrix analysis to calculate the framing forces and displacements subjected to both monotonic and cyclic loading.
Originally, the lattice model was used to predict the seismic behaviors of bridge piers. In order to predict the behavior of RC moment-resisting frames, the original program must be modified. Such as multi concrete models, concrete soften coefficient, stiffness degradation in simulating beam-column joint part, etc. were considered.
The modified analytical program was verified by using four tested frames with different failure modes and two story-two bay reinforced concrete moment-resisting frame. The predicted results using the modified program correlated overall framing response well. The results of the detail analysis on shear deformations of columns and beam-column joints also agreed with testing measurements well. It represents the refined analytical program simulates the behavior of RC moment-resisting frame in a feasible way.
However, the research still has some issues need to be discussed. Such as the predicted initial stiffness of the structures is higher than experimental result, the simulation of stiffness degradation in beam-column joints, and the angle limit of arch members, should be discussed in the future.
關鍵字(中) ★ 桁架模式
★ 梁柱接頭
★ 抗彎構架
★ 分析
關鍵字(英) ★ beam-column joint
★ truss model
★ Moment-resisting frame
★ analysis
★ 3D Lattice model
論文目次 目錄
一、緒論 1
1.1前言 1
1.2研究目的 2
二、文獻回顧 3
2.1 混凝土基本模擬 3
2.1.1 Popovic混凝土模型 3
2.1.2 Mander混凝土模型 5
2.1.3 Vecchio與Collins混凝土模型 8
2.1.4 Okamura與Maekawa混凝土模型 8
2.1.5 Uchida混凝土模型 9
2.2 混凝土抗壓軟化效應 9
2.2.1 Vecchio與Collins軟化模式 10
2.2.2 Belarbi與Hsu軟化係數 10
2.3 鋼筋模型 11
2.3.1 Fukuura鋼筋模型 11
2.3.2鋼筋挫屈模型 12
2.3.3 鋼筋滑移模式 13
2.4 接頭剪力預測 14
三、抗彎構架分析模型Lattice model介紹與修正 16
3.1 Lattice Model模型 16
3.1.1 混凝土與鋼筋桿件 17
3.1.2 材料性質設定 20
3.2 Lattice Model分析模型建立 21
四、桁架模型分析結果與驗證 24
4.1 參數變化分析(parametric study) 24
4.1.1混凝土軟化係數之探討 24
4.1.2 梁對接頭的造成的圍束效果 25
4.1.3 模擬多種材料性質 26
4.1.4 對接頭部分做鋼筋之折減 27
4.1.5 拱桿件不同分佈情形 27
4.2 構架實驗印證 28
4.2.1 分析試體簡介 28
4.2.2 分析與實驗結果比較 29
4.3兩層兩跨構架預測 32
五、結論與建議 34
5.1 結論 34
5.2 建議 35
參考文獻 37
附錄A Lattice model分析模型t值之計算 91
附錄B 實驗結果與預測結果初始勁度之比較 95
參考文獻 1. Collins, M. P., and Mitchell, D., Prestressed Concrete Structures, pp. 62(1991).
2. Thorenfeldt, E., Tomaszewicz, A., and Jensen, J. J., “Mechanical Properties of High-Strength Concrete and Application in Design,” Proceedings of the Symposium “Utilization of high strength Concrete.” Stavanger, Noway, Tapir, Trondheim, pp. 149-159(1987).
3. Pauw, A., “Static Modulus of Elasticity of Concrete as Affected by Density,” ACI Journal, Vol. 57, No. 6, pp 679-688(1960).
4. Carrasquillo, R. L., Nilson, A. H., and Slate, F. O., “Properties of High Strength Concrete Subject to Short-Term Loads,” ACI Journal, Vol 78, No. 3, pp. 171-178(1981).
5. Mander, J. B., Priestley, M. J. N., and Park, R., ASCE “Theoretical Stress-Strain Model for Confined Concrete” Journal of Structural Engineering, Vol. 114, No. 8, pp. 1804-1826(1988).
6. Priestley, M. J. N., Seible, F., and Calvi, G. M., Seismic Design and Retrofit of Bridges, pp. 270-271(1996).
7. Vecchio, F. J., and Collins, M. P., “The Modified Compression Field Theory for Reinforced Concrete Elements Subjected to Shear,” ACI Journal, Vol.83, No2, pp.219-231(1986).
8. Okamura, H. and Maekawa, K., Nonlinear Analysis and Constitutive Models of Reinforced Concrete, Gihodo Publication(1991).
9. Uchida, U., Rokugo, K., and Koyanagi, W., “Determination of Tension Softening Diagrams of Concrete by Means of Bending Tests, “Journal of Materials, Concrete Structures and Pavements, JSCE, No. 426/V-14, pp.203-212(1991).
10. Vecchio, F. J., and Collins, M. P., ”Response of Reinforced Concrete to In Plane Shear and Normal Stresses,” Report No. 82-03, University of Toronto, Canada(1982).
11. Belarbi, A., and Hsu, T. T. C., ”Constitutive Laws of Softened Concrete in Biaxial Tension-Compression,” ACI Structural Journal, Vol. 92, No. 5, September-October, pp.562-573 (1995).
12. Fukuura, N. and Maekwa, K., “Computational Model of reinforcing Bar under Reversed Cyclic Loading for RC Nonlinear Analysis,” Journal of Materials, Concrete Structures and Pavements, JSCE, No. 564/V-35, pp.291-295(1997).
13. Dhakal, R. P., Enhanced Fiber Model in Highly Inelastic Range and Seismic Performance Assessment of Reinforced Concrete, Doctoral thesis, The University of Tokyo(2000).
14. Shin, H., Maekawa, K., and Okamura, H., “Analytical Approach of RC Members Subjected to Reversed Cyclic In-plane Loadings, Proceeding of the JCI Colloquium on Ductility of Concrete Structures and its Evaluation, pp.(II-45)-(II-56)(1988).
15. 葉欲凡,「鋼筋混凝土梁柱接頭剪力衰減模式應用於構架層間剪力與變位之預測」,碩士論文,王勇智教授指導,國立中央大學土木工程研究所,桃園(2005)。
16. Miki, T., “Nonlinear Analysis of Reinforced Concrete Structures Subjected to Seismic Loads by Using Three-dimensional Lattice Model,” Supervised by Professor J. Niwa, PhD thesis , Department of Civil Engineering, Tokyo Institute of Technology, Japan, 210pp. (2004).
17. 何偉智,「鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2003)。
18. 賴宗祺,「桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2004)。
19. 林彥谷,「鋼筋混凝土擴柱補強後新舊混凝土滑移對結構物耐震性能影響之探討」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2005)。
20. 楊森盛,「含有不同破壞模式之鋼筋混凝土抗彎構架實驗」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2006)。
21. 黃金順,「雙層兩跨鋼筋混凝土抗彎構架耐震測試」,碩士論文,王勇智教授指導,國立中央大學土木工程學研究所,桃園(2003)。
指導教授 王勇智(Yung-Chih Wang) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明