博碩士論文 943202021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.223.0.53
姓名 陳柏全(Po-Chuan Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 隔震橋梁之最佳化結構控制
(OPTIMUM STRUCTURAL CONTROL OF SEISMICALLY ISOLATED BRIDGES)
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 跨越斷層橋梁之極限動力分析★ 塑鉸極限破壞數值模型開發
★ 橋梁直接基礎搖擺之極限分析★ 考量斷層錯動與塑鉸破壞之橋梁極限分析
★ Impact response and shear fragmentation of RC buildings during progressive collapse★ 應用多項式滾動支承之隔震橋梁研究
★ Numerical Simulation of Bridges with Inclined★ 橋梁三維極限破壞分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隔震支承雖可降低橋梁所引致之地震力,但於強震中上部結構可能產生相當大之位移反應,本研究提出改良式滑模變控制演算法於非線性隔震橋梁之結構控制,並藉由分析模擬來探討規則性隔震橋梁在大地震作用下滑模變控制演算法之有效性,結果顯示相較於傳統LQR最佳控制法及被動控制,滑模變控制演算法在適當的滑模面下能達到較佳的控制效果。此外,研究成果亦證實運用變黏滯阻尼器為半主動控制裝置時,可達到接近於主動控制之控制成效。
橋梁由於受地形與線型高程之影響,橋墩經常有不等高之情形,因不等高橋墩之勁度不同,導致各橋墩所受之地震力與結構反應會有所差異。本研究以數值模擬分析探討採用滑模變結構控制演算法於不等高橋墩隔震橋梁之減震效果。由於不等高橋墩隔震橋梁為多自由度結構系統,決定滑模面所需之參數值較多,不易以參數分析法求得最佳之滑模面,本研究採用且改良PSO-SA (particle swarm optimization-simulated annealing)混合搜尋法來求取結構之最佳滑模面,並與參數分析法所得結果比較,數值分析結果證實滑模變結構控制演算法以改良的PSO-SA混合搜尋法求取最佳滑模面,能有效控制不等高橋墩隔震橋梁之地震位移反應。
此外,本研究使用磁流變消能器與改良式滑模變結構控制演算法進行一系列的振動台實驗,探討半主動控制系統實際應用時之相關問題,採用一座雙層剪力構架模型及一座以滾動單擺系統作為隔震支承之不等高隔震結構分別模擬規則及不規則隔震橋梁的動力行為,振動台試驗結果顯示無論結構為線性行為或非線性行為,皆有良好的位移反應控制,驗證以改良式滑模變結構控制演算法計算控制力,且用磁流變消能器作為控制裝置之半主動控制系統半主動控制系統可有效地實際應用於非線性隔震橋梁。
摘要(英) An alternative design method of sliding mode control is proposed for practical implementation on nonlinear isolated bridges in this study. The proposed controller explicitly reveals the robustness of sliding mode control to parametric uncertainties of structures. The effectiveness of sliding mode control is studied numerically and systematically for an isolated viaduct under extreme earthquakes. The results show that the sliding mode control with appropriate sliding surfaces, obtained by parametric study, achieves outstanding control performance compared to the conventional LQR control and viscous damping passive control. Additionally, the performance of active control can be considerably fulfilled by the semi-active control with variable dampers using the proposed control algorithm.
Compared with typical isolated bridges, the irregular isolated bridge has more poles of sliding surface, which dominates the dynamic characteristics of the controlled system and should be determined for the sliding mode control. The effectiveness of sliding mode control on the seismic response of an isolated bridge with columns of irregular heights, which exhibit hysteretic behaviors at both the columns and isolators, is studied. However, because many parameters of sliding surface for the irregular isolated bridge should be determined, it is difficult to find the optimum parameters efficiently and comprehensively by parametric study. The particle swarm optimization-simulated annealing (PSO-SA) hybrid searching algorithm which is an optimization technique, is employed, modified and shown to outperform the particle swarm optimization algorithm and a parametric approach in finding the best sliding surface. Numerical simulations reveal that the sliding mode control together with the modified PSO-SA hybrid searching algorithm provides a simple and powerful technique for more effectively controlling the nonlinear seismic responses of the irregular isolated bridge.
A series of shaking table tests were conducted to study the semi-active control with MR dampers for the isolated bridges. A two-story shear-type structure assembled by steel plates and rolled shapes and an isolated structure with columns of irregular heights assembled by steel plates and two pairs of RPS on the top of both columns are designed to simulate the behavior of typical and irregular isolated bridge. The feasibility of the semi-active control system with a MR damper commanded by the continuous sliding mode control algorithm is verified in practical implementations for structures undergoing elastic or inelastic behavior to ground motions.
關鍵字(中) ★ 隔震橋梁
★ 滑模變結構控制演算法
★ 振動台試驗
★ 粒子群搜尋法
★ 模擬退火法
★ 磁流變消能器
★ 最佳結構控制
關鍵字(英) ★ shaking table test
★ sliding mode control
★ isolated bridge
★ optimum structural control
★ simulated annealing
★ swarm optimization
★ Magnetorheological damper
論文目次 Abstract
Acknowledgements
Table of Contents I
List of Tables VII
List of Figures VIII
List of Photos XV
Nomenclature XVI
Chapter 1 Introduction 1
1.1 Problem Statement 1
1.2 Literature Review 3
1.2.1 Structural Control Strategies 3
1.2.2 Response Control of Seismically Isolated Bridges 4
1.2.3 Control Algorithms for Nonlinear Structures 7
1.2.4 Optimization Techniques 8
1.3 Objectives 10
1.4 Dissertation Outline 10
Chapter 2 Sliding Mode Control for Nonlinear Isolated Bridges 12
2.1 Introduction 12
2.2 Analysis Model for Nonlinear Isolated Bridges 13
2.3 Controller of Sliding Mode Control 14
2.4 Design of Sliding Surface 16
2.5 Linear Quadratic Regulator Control for Comparison 18
2.6 Active Control Simulation Results 19
2.6.1 Target Viaduct and Input Ground Motions 19
2.6.2 Design of Sliding Surfaces 20
2.6.3 Comparison of control performance 22
2.6.4 Discussion 24
2.7 Semi-active Control Simulation Results 24
2.8 Conclusions 26
Chapter 3 Experimental and Analytical Study on Isolated Bridges under Sliding Mode Control 41
3.1 Introduction 41
3.2 Experimental Setup 42
3.2.1 MR Damper Modeling 42
3.2.2 Test Structure 44
3.2.3 System Identification 45
3.3 Experimental and Analytical Results 47
3.4 Conclusions 50
Chapter 4 Sliding Mode Control on Isolated Bridges With Columns of Irregular Heights 64
4.1 Introduction 64
4.2 Target Bridge and Analytical Model 65
4.2.1 Target Bridge 65
4.2.2 Analytical Model 66
4.3 Numerical Simulation Results 67
4.3.1 Parametric Study 68
4.3.2 Time history results 69
4.4 Conclusions 70
Chapter 5 Sliding Mode Control Using Pole Assignment and Pso-Sa Hybrid Algorithm on Irregular Isolated Bridges 84
5.1 Introduction 84
5.2 PSO-SA Hybrid Algorithm 85
5.2.1 Constrained Multi-Objective Optimization 85
5.2.2 Particle Swarm Optimization 87
5.2.3 Simulated Annealing 89
5.2.4 PSO-SA Hybrid Searching Algorithm 89
5.2.5 Modified PSO-SA Hybrid Searching Algorithm 91
5.3 Numerical Simulation Results 93
5.4 Conclusions 95
Chapter 6 Experimental and Analytical Study on Semi-Active Control for Irregular Isolated Bridges 103
6.1 Introduction 103
6.2 Experimental Setup 103
6.2.1 Rolling Pendum system and MR Damper Modeling 104
6.2.2 Test Structure 106
6.2.3 System Identification 107
6.3 Experimental and Analytical Results 109
6.4 Conclusions 114
Chapter 7 Conclusions 139
7.1 Conclusions 139
7.2 Future Work 142
Appendix LQR Optimal Control 143
References 145
參考文獻 Buckle, I. and Mayes, R. (1992). “History and application of seismic isolation to highway bridges.” Proc. 1st US-Japan Workshop on Earthquake Protective Systems, NCEER-92-4, National Center for Earthquake Engineering Research, Buffalo, N.Y., 27-40.
Charalampakis, A. E. and Dimou, C. K. (2010). “Identification of Bouc-Wen hysteretic systems using particle swam optimization.” Computers and Structures, 88, 1197-1205.
Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1996). “Modeling and Control of Magnetorheological Dampers for Seismic Response Reduction.” Smart Materials and Structures, 5, 565-575.
Erkus, B., Abe, M. and Fujino, Y. (2002). “Investigation of Semi-Active Control for Seismic Protection of Elevated Highway Bridges.” Engineering Structures, 24(3), 281-293.
Eberhart, R. C., and Kennedy, J. (1995). “A New Optimizer Using Particle Swarm Theory.” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43.
Eberhart, R. C., and Shi, Y. (1998). “Comparison Between Genetic Algorithms and Particle Swarm Optimization.” Proceedings of the Seventh Annual Conference on Evolutionary Programming, 611−616.
Fan, Y. C., Loh, C. H., Yang, J. N. and Lin, P. Y. (2009). “Experimental Performance Evaluation of an Equipment Isolation using MR Dampers.” Earthquake Engineering and Structural Dynamics, 38(3), 285-305.
Feng, Q. and Shinozuka, M. (1993). “Control of Seismic Response of Bridge Structures Using Variable Dampers.” Journal of Intelligent Material Systems and Structures, 4, 117-122.
Fourie, P. C., and Groenwold, A. A. (2002). “The Particle Swarm Optimization Algorithm in Size and Shape Optimization.” Structural and Multidisciplinary Optimization, 23(4), 259−267.
Japan Road Association (1996). Design Specifications of Highway Bridges, Part V Seismic Design, Maruze, Tokyo.
Jansen, L.M. and Dyke, S.J. (2000). “Semiactive Control Strategies for MR Dampers: Comparative Study.” Journal of Engineering Mechanics, ASCE, 126(8), 795-803.
Jangid, R.S. (2008a). “Stochastic response of bridges seismically isolated by friction pendulum system.” Journal of Bridge Engineering, ASCE, 13(4), 319-330.
Jangid, R.S. (2008b). “Equivalent linear stochastic seismic response of isolated bridges.” Journal of Sound and Vibration, 309, 805-822.
Juang, D.S. and Chuang ,W.S. (2007) “A PSO-SA hybrid searching algorithm for least weight design of structures (in Chinese).” 31th National Conference on Theoretical and Applied Mechanics, ISU, Kaohsiung, Taiwan.
Hiwatashi, T., Shiozaki, Y., Fujitain, H. and Soda, S. (2003). “Semi-Active Base-Isolation System by MR damper utilizing Optimal Regulator Theory.” Journal of Structural and Constructional Engineering, AIJ, 567, 47-54. (in Japanese)
Kawashima, K. and Unjoh, S. (1989), “Development of Hybrid Control Technology.” Civil Engineering Journal, Tokyo, Japan, 32(6), 2-5.
Kawashima, K., Unjoh, S., Nagashima, H. and Shimizu, H. (1991). “Current Research Efforts in Japan for Passive and Active Control of Highway Bridges Against Earthquakes.” Proc. 23rd Joint Meeting, U.S.-Japan Panel on Wind and Seismic Effect, Tsukuba, Japan, 187-209.
Kawashima, K., Unjoh, S. and Shimizu, H. (1992a). “Experiments on Dynamic Characteristics of Variable Damper.” Proc. Japan National Symposium on Structural Response Control, Japan, 121-128.
Kawashima, K., Unjoh, S. and Shimizu, H. (1992b). “Experiments on Dynamic Characteristics of Variable Damper.” Proc. Japan National Symposium on Structural Response Control, Japan, 311-317.
Kawashima, K. and Unjoh, S. (1993). “Variable Dampers and Variable Stiffness for Seismic Control of Bridges.” Proceeding, International Workshop on Structural Control, U.S. Panel on Structural Control Research, Los Angles, California, 283-297.
Kawashima, K. and Unjoh, S. (1994). “Seismic Response Control of Bridges by Variable Dampers.” Journal of Structural Engineering, ASCE, 120(9), 2583-2601.
Kennedy, J. and Eberhart, R. C. (1995). “Particle swarm optimization” Proceedings of the IEEE International Conference on Neural Networks IV, Piscataway, 1942-1948.
Kennedy, J., and Eberhart, R. C. (2001). Swarm Intelligence, Morgan Kaufmann.
Kori, J. G. and Jangid, R. S. (2008). “Semiactive Control of Seismically Isolated Bridges.” International Journal of Structural Stability and Dynamics, 8(4), 547-568.
Kwok, N. M., Ha, Q. P., Nguyen, T. H., Li J. and Samali, B. (2006). “A Novel Hysteretic model for Magnetorheological Fluid Dampers and Parameter Identification Using Particle Swarm Optimization.” Sensors and Actuators, 132(2), 441-451.
Lam, H. F. and Liao, W. H. (2003). “Semi-Active Control of Automotive Suspension Systems with Magneto-Rheological Damper.” International Journal of Vehicle Design, 33(1/2/3), 50-75.
Lee, T. Y. and Kawashima, K. (2006). “Effectiveness of Seismic Displacement Response Control for Nonlinear Isolated Bridge.” Journal of Structural Mechanics and Earthquake Engineering, JSCE, (808/I-74), 1-15.
Lee, T. Y. and Kawashima, K. (2007). “Semi-Active Control of Nonlinear Isolated Bridges with Time Delay.” Journal of Structural Engineering, ASCE, 133(2), 235-241.
Leung, A. Y. T., Zhang H., Cheng, C. C., and Lee Y. Y. (2008). “Particle Swarm Optimization of TMD by Non-Stationary Base Excitation during Earthquake.” Earthquake Engineering and Structural Dynamics , 37(9), 1233-1246.
Lin, P. Y. (2006). “Shaking Table Test of a Smart Base-Isolation System with MR Damper.” Proceedings of the 4th World Conference on Structural Control and Monitoring, San Diego, CA, USA.
Lin, P. Y. and Lin, T. K. (2012). “Control of seismically isolated bridges by magnetorheological dampers and a rolling pendulum system.” Structural Control and Health Monitoring, 19(2), 278-294.
Loh, C. H., Wu, L. Y. and Lin, P. Y. (2003). “Displacement Control of Isolated Structures with Semi-Active Control Devices.” Journal of Structural Control, 10(2), 77-100.
Lu, S., Ju, K. H. and Chon, K. H. (2001). “A New Algorithm for Linear and Nonlinear ARMA model Parameter Estimation Using Affine Geometry,” IEEE Transactions on Biomedical Engineering, 48(10), 1116-1124.
Lu, L. Y., Lin, G. L. and Lin, C. Y. (2011). “Experiment of an ABS-type control strategy for semi-active friction isolation systems.” Smart Structures and Systems, 8(5), 501-524.
Lu, L. Y. and Lin, G. L. (2009). “Fuzzy friction controllers for semi-active seismic isolation systems” Journal of Intelligent Material Systems and Structures, 20(14), 1747-1770.
Lu, L. Y. (2004). “Predictive control of seismic structures with semi-active friction dampers” Earthquake Engineering and Structural Dynamics, 33(5), 647-668.
Lu, L. Y. (2004). “Semi-active modal control for seismic structures with variable friction dampers” Engineering Structures, 26( 4), 437-454.
MATLAB (2000). The Math Works, Inc., Massachusetts, USA.
Markris, N. and Zhang, J. (2004). “Seismic response analysis of a highway overcrossing equipped with elastomeric bearings and fluid dampers.” Journal of Structural Engineering, 130(6), 830-845.
Meirovitch, L. (1989). Dynamics and Control of Structures, John Wiley & Sons, Singapore.
Nagarajaiah, S., Riley, M. A. and Reinhorn, A. (1993). “Control of Sliding-Isolated Bridge with Absolute Acceleration Feedback.” Journal of Engineering Mechanics, ASCE, 119(11), 2317-2332.
Poli, R., Kennedy, J. and Blackwell, T. (2007). “Particle swarm optimization: An overview.” Swarm Intelligence, 1(1), 33-57.
Park, I. G. and Kim, J. G. (2001). “Robust Control for Dynamic Waking of a Biped Robor with Ground Contacting Condition.” IEEE Proceedings ISIE 2001, 2067-2072.
Priestley, M. J. N., Seible, F. and Calvi, G. M. (1996). Seismic Design and Retrofit of Bridges, John Wiley & Sons, Inc. New York.
Reinhorn, A. M., Soong, T. T., Lin, R. C., Riley, M. A., Wang, Y. P., Aizawa, S. and Higashino, M. (1992). “Active Bracing System: A Full Scale Implementation of Active control.” Technical Report NCEER-92-20, National Center for Earthquake Engineering Research, Buffalo, N.Y., 27-40.
Robinson, W. H. and Greenbank, L. R. (1976). “An extrusion energy absorber suitable for the protection of structures during earthquakes.” Earthquake Engineering and Structural Dynamics, 4(3), 251-259.
Roberts, J. E. (2005) “Caltrans structural control for bridges in high-seismic zones.” Earthquake Engineering and Structural Dynamics, 34(4-5), 449-470.
Ruangrassamee, A. and Kawashima, K. (2001). “Experimental Study on Semi-active Control of Bridges with Use of Magnetorheological Damper.” Journal of Structural Engineering, JSCE, 47A, 639-650.
Sahasrabudhe, S.S. and Nagarajaiah, S. (2005). “Semi-active Control of Sliding Isolated Bridges Using MR Damper: an Experimental and Numerical Study.” Earthquake Engineering and Structural Dynamics, 34(8), 965-983.
Safak, E. (1991). “Identification of Linear Structures Using Discrete-Time Filters,” Journal of Structural Engineering, ASCE, 117(19), 3064-3085.
Singh, S. N. (1989). “Asymptotically Decoupled Discontinuous Control of Systems and Nonlinear Aircraft Maneuver.” IEEE Transactions on Aerospace and Electronic Systems, 25(3), 380-391.
Singh, S. N. and Iyer, A. (1989). “Nonlinear Decoupling Sliding Mode Control and Attitude Control of Spacecraft.” IEEE Transactions on Aerospace and Electronic Systems, 25(5), 621-633.
Shi, Y. and Eberhart, R. C. (1998a). “A Modified Particle Swarm Optimizer.” Proceedings of the IEEE International Conference on Evolutionary Computation, 69−73.
Shi, Y. and Eberhart, R. C. (1998b). “Parameter Selection in Particle Swarm Optimization.” V. W. Porto, N. Saravanan, D. Waagen, and A. E. Eiben (eds), Lecture Notes in Computer Science, 1447, Evolutionary Programming VII, Springer, Berlin, 591−600.
Shih, C., Wang, T. K. and Ting, E. C. (2004). “Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples.” Journal of Mechanics, 20(2), 133-143.
Skinner, R. I. and Robinson, W. H. (1993). An Introduction to Seismic Isolation, John Wiley & Sons, New York, USA.
Spencer, B. F. and Sain, M. K. (1997). “Controlling buildings: A new frontier in feedback.” IEEE Control Systems, 17(6), 19-35.
Spencer, B. F. and Nagarajaiah, S. (2003). “State of the Art of Structural Control.” Journal of Structural Engineering, ASCE, 129(7), 845-856.
Soong, T. T. (1990). Active Structural Control: Theory and Practice, Longman, UK.
Soong, T. T. and Constantinou, M. C. (1994). Passive and Active Structural Control in Civil Engineering, Springer: Vienna, New York
Soong, T. T. and Dargush, G. F. (1997). Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons, New York, USA.
Symans, M. D. and Constantinou, M. C. (1997). “Seismic Testing of a Building Structure with a Semi-Active Fluid Damper Control System.” Earthquake Engineering and Structural Dynamics, 26(7), 759-777.
Symans, M. D., Kelly, S. W. (1999). “Fuzzy Logic Control of Bridge Structures Using Intelligent Semi-active Seismic Isolation Systems.” Earthquake Engineering and Structural Dynamics, 28(1), 37-60.
Ting, E. C. Shih, C. and Wang, Y. K. (2004a). “Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element.” Journal of Mechanics, Vol.20, No.2, 113-122.
Ting, E. C. Shih, C. and Wang, Y. K. (2004b). “Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements.” Journal of Mechanics, Vol.20, No.2, 123-132.
Tsai, M. H., Wu, S. Y., Chang, K. C. and Lee, G. C. (2007). “Shaking table tests of a scaled bridge model with rolling-type seismic isolation bearings.” Engineering Structures, 29(5), 694-702.
Tsopelas, P., Constantinou, M. C., Okamoto, S., Fujii, S. and Ozaki D. (1996). “Experimental study of bridge seismic sliding isolation systems.” Engineering Structures, 18(4), 301-310.
Tsopelas, P. and Constantinou, M. C. (1997). “Study of elastoplastic bridge seismic isolation system.” Journal of Structural Engineering, 123(4), 489-498.
Utkin, V. I. (1992). Sliding Modes in Control and Optimization, Springer, Berlin.
Wen, Y. K. (1976). “Method for Random Vibration of Hysteretic System.” Journal of Engineering Mechanics Division, ASCE,102(EM2), 249-263.
Xia, Y. K., Yu, X. and Oghanna, W. (2000) “Adaptive Robust Fast Control for Induction Motors.” IEEE Transactions on Industrial Electronics, 47(4), 854-862.
Yang, J. N., Li, Z. and Vongchavalitkul, S. (1992). “A Generalization of Optimal Control Theory: Linear and Nonlinear Control.” Technical Report NCEER-92-26, National Center for Earthquake Engineering Research, Buffalo, New York
Yang, J. N., Li, Z. and Vongchavalikul, S. (1994a), “Generalization of Optimal Control Theory: Linear and Nonlinear Control.” Journal of Engineering Mechanics, ASCE, 120(2), 266-283.
Yang, J. N., Li, Z., Wu, J. C. and Hsu, I. R. (1994b), “Dynamic Linearization for Sliding Isolated Building.” Journal of Engineering Structures.
Yang, J. N., Wu, J. C., Agrawal A. K. and Li, Z. (1994c), “Sliding Mode Control for Seismic-excited Linear and Nonlinear Civil Engineering Structures.” Technical Report NCEER-92-26, National Center for Earthquake Engineering Research, Buffalo, N.Y.
Yang, J. N., Wu, J. C., Kawashima, K. and Unjoh, S. (1995a). “Hybrid Control of Seismic-excited Bridge Structures.” Earthquake Engineering and Structural Dynamics, 24(11), 1437-1451.
Yang, J. N., Wu, J. C. and Agrawal, A. K. (1995b), “Sliding Mode Control for Nonlinear and Hysteretic Structures.” Journal of Engineering Mechanics, ASCE, 121(12), 1330-1339.
Yang, J. N., Wu, J. C., Reinhorn, A. M. and Riley, M. (1996). “Control of Sliding-Isolated Buildings Using Sliding-Mode Control.” Journal of Structural Engineering, ASCE, 122(2), 179-186.
Yang, G., Spencer, B.F. Jr., Carlson, J.D. and Sain, M.K. (2002). “Large-Scale MR Fluid Dampers: Modeling and Dynamic Performance Consideration.” Engineering Structures, 24, 309-323.
Ye, M. and Wang, X. (2007). “Parameter estimation of the Bouc-Wenhysteresis model using particle swarm optimization.” Smart Materials and Structures, 16(6), 2341–2349.
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2012-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明