博碩士論文 943202023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:54.210.158.163
姓名 游忠霖(Chung-lin Yu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以ABAQUS探討熱探針法之試驗變因
(Discussing the factors of thermal probe method with ABAQUS)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究根據熱探針法之試驗原理,藉由有限元素分析軟體(ABAQUS),以合理的分析條件及適當的材料參數進行數值模擬,透過與理論解之比較,驗證數值模式之準確性與適用性。接著,逐一探討熱探針法之試驗變因(試體尺寸、淨空、填充導熱泥及輸入電壓等問題),並配合張家銘(2006)之試驗結果,推求準確之量測值。最後進行材料之參數研究及非等向性岩石之數值模擬,以作為往後實驗者之考量依據。
數值結果顯示,試體之寬徑比應達12.5以上,以避免邊界效應之影響;隨著淨空值增加,會造成低估試體熱傳導係數,且由等值線圖可知,熱傳遞範圍明顯減少,建議填充適當之導熱泥;導熱泥使用應考量待測物之熱傳導係數,不宜填充過差而影響熱源傳遞;電壓輸入量不影響試體之熱傳導係數。參數研究方面,熱源材料比熱或密度對升溫曲線前半部(0~100秒)影響程度最大,建議採用100秒後直線段推求熱傳導係數;相同接觸熱阻條件下,接觸介面厚度較高者填充高熱導性之導熱泥,將提升試體熱傳導係數。
非等向性岩石之數值結果可知,數值模擬證實層狀岩石可等值為橫向等向性岩石;橫向等向性岩石不同異向性比之探討,數值解與Laplace方程式理論解皆有良好的一致性。
摘要(英) According to the experimental principle of thermal probe method, the research adopted the finite element analysis (ABAQUS), it carried on the numerical simulation with rational analysis condition and appropriate materal parameters. Through the comparison with theoretical solution, verify the accuracy and suitability of numerical model. Then, some factors of thermal probe method are investigated, including the relative size of the specimen, clearance, type of thermal grease, and inputting the voltage etc., and cooperate with the result of the experiment by Chang(2006) to inquire into the accurate value. Finally, it carried on parameter research and numerical simulation of non-isotropic rock, in order to take them into account for test subsequently.
The numerical result showed that the aspect ratio of the specimen up to 12.5, avoid the influence of boundary effect. If clearance increases, it will underestimate thermal conductivity of the specimen. According to the contour plot, the range of heat transfer will reduce obviously. So numerical result indicated that it need to pack the appropriate thermal grease. The respect of using thermal grease, it should be consider the thermal conductivity of the specimen, not pack too bad to influence the heat transmission. The value of inputting voltage will not influence the thermal conductivity of the specimen. The respect of parameter research showed that the specific heat or density of heat source material causes heavy influence on the range of 0~100 seconds in temperature rise curve. So it suggested to adopt the straight line section after 100 seconds to inquired into thermal conductivity. Under the same thermal resistivity, if the thickness of interface is thicker to pack higher thermal conductivity of grease, it will improve thermal conductivity of the specimen.
The numerical result of non-isotropic rock showed that the numerical simulation verifies two-phase layered rock can be equivalent to transversely isotropic rock. The discussion of transversely isotropic rock at anisotropic ratio, it can find that numerical solution well agreed with theoretical solution of Laplace’s equation.
關鍵字(中) ★ 橫向等向性
★ 接觸熱阻
★ 等值線圖
★ ABAQUS
★ 熱探針法
關鍵字(英) ★ contour plot
★ ABAQUS
★ transversely isotropic rock
★ thermal probe method
★ thermal resistivity
論文目次 摘要 I
Abstract II
誌謝 Ⅲ
目錄 IV
圖目錄 VII
表目錄 XI
第一章緒論 1
1.1前言 1
1.2研究目的與方法 1
1.3論文架構 2
1.4研究流程 3
第二章文獻回顧 4
2.1大地材料基本熱學理論 4
2.2熱傳導係數之定義 4
2.3熱擴散方程式之推導 6
2.4熱傳導係數之量測方法 8
2.4.1熱探針法 8
2.4.2熱探針連續量測法 11
2.4.3暫態平面熱源法 12
2.4.4熱流計法 13
2.4.5分割棒法 14
2.4.6各量測方法比較 15
2.5複合材料熱傳導係數預測模式 16
2.5.1N相材料之串聯與並聯 16
2.5.2Self-Consistent Scheme預測模式 17
2.5.3微分模式(Differential Scheme) 19
2.5.4岩石熱傳導係數之預測模式 20
2.6前人之熱探針量測法數值模擬研究 23
第三章數值模擬 26
3.1有限元素軟體簡介 26
3.2數值分析理論 27
3.3熱探針量測法之試驗儀器 29
3.3.1熱探棒 29
3.3.2電源供應器 31
3.3.3資料擷取系統 32
3.3.4試驗之量測方式 33
3.4有限元素數值分析 34
3.4.1建構物件 35
3.4.2材料參數 36
3.4.3設定分析種類並輸出變數 36
3.4.4設定接觸面 37
3.4.5邊界條件 39
3.4.6選用合理的元素與劃分網格 41
第四章數值模擬結果與討論 42
4.1數值模型之驗證 42
4.1.1網格收斂性之探討 42
4.1.2數值解與解析解比較 45
4.2數值模擬與實驗結果之比較 47
4.2.1試體尺寸之探討 47
4.2.2淨空值之探討 50
4.2.3填充導熱泥之改善情形 55
4.2.4輸入電壓之探討 63
4.2.4-1石蠟試體在不同電壓值之結果 65
4.2.4-2硬固水泥試體在不同電壓值之結果 68
4.3參數研究 71
4.3.1熱源材料比熱之探討 71
4.3.2熱源材料密度之探討 74
4.3.3熱源材料熱傳導係數之探討 77
4.3.4施加不同熱功率之探討 79
4.3.5接觸介面熱阻係數之探討 82
4.3.6距離熱源不同徑向位置之溫度 85
4.4橫向等向性岩石之數值模擬 88
4.4.1熱流在橫向等向性岩石之擴散方程式 88
4.4.2層狀岩石與橫向等向性之類比驗證 90
4.4.3橫向等向性岩石之不同異向性比之數值模擬 95
第五章結論與建議 97
5.1結論 97
5.2建議 99
參考文獻 100
參考文獻 (1) 王仁正,「人造互層岩石之力學性質」,碩士論文,國立中央大學土木工程研究所,中壢 (1995)。
(2) 田永銘、朱正安、張大猷,「緩衝材料熱傳導係數之量測與預測模式」,2004 岩盤工程研討會論文集,台北,第694-701頁(2004)。
(3) 田永銘、朱正安、張家銘、鐘富誠、陳婕,「熱探針量測法應用於大地材料之適用性」,2006 岩盤工程研討會論文集,台南,第 669-678 頁 (2006)。
(4) 呂紹垣,「以ABAQUS模擬粉體之壓實行為」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
(5) 林俊宏,「粉體在不同含水量及乾單位重下之熱傳導係數」,碩士論文,國立中央大學土木工程研究所,中壢 (2006)。
(6) 張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測 與分析」,碩士論文,國立中央大學土木工程研究所,中壢 (2004)。
(7) 張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,碩 士論文,國立中央大學土木工程研究所,中壢 (2006)。
(8) 愛發股份有限公司,ABAQUS實務入門引導,全華科技圖書股份 有限公司,台北 (2005)。
(9) 劉俊志,「膨潤土與花崗岩碎石混合材料之熱傳導係數」,碩士 論文,國立中央大學土木工程研究所,中壢 (2003)。
(10) 簡城宗,「複合土體熱傳導性質之初步研究」,碩士論文,國
立中央大學土木工程研究所,中壢 (1996)。
(11) 鄔德傳,「緩衝材料熱傳導性質與放射性廢料處置場溫度效 應」,碩士論文,國立中央大學土木工程研究所,中壢 (2001)。
(12) Abdou, A. A. and Budaiwi, I. M., "Comparison of thermal conductivity measurements of building insulation materials under various operating temperatures," Journal of Building Physics, Vol.29, No. 2, pp. 171-184 (2005).
(13) Abdulagatov, I. M., Emirov, S. N., Abdulagatova, Z. Z., and Askerov, S. Y., "Effect of pressure and temperature on the thermalconductivity of rocks," Journal of Chemical and Engineering Data, Vol. 51, No. 1, pp. 22-33 (2006).
(14) Abu-Hamdeh, N. H., Khdair, A. I., Reeder, R. C., “A comparison of two method used to evaluate thermal conductivity for some soils,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 1073-1078 (2001).
(15) ASTM, "ASTM D5334:Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure," Annual Book of ASTM Standards, Vol. 0409, No. (2000).
(16) Batty, W. J., O'Callaghan, P. W., and Probert, S. D., "Assessment of the thermal-probe technique for rapid, accurate measurements of effective thermal conductivities," Applied Energy, Vol. 16, No. 2, pp. 83-113 (1984).
(17) Bouguerra, A., Laurent, J. P., Goual, M. S., and Queneudec, M., "Measurement of the thermal conductivity of solid aggregates using the transient plane source technique," Journal of Physics D: Applied Physics, Vol. 30, No. 20, pp. 2900-2904 (1997).
(18) Carslaw, H. S., and Jaeger, J. C., “Conduction of Heat in Solid,” Second Edition, Oxford at the Clarendon Press, pp.261-262 (1959).
(19) Chandrakanthi, M., Mehrotra, A. K., and Hettiaratchi, J. P. A.,"Thermal conductivity of leaf compost used in biofilters: Anexperimental and theoretical investigation," Environmental Pollution, Vol. 136, No. 1, pp. 167-174 (2005).
(20) Cote, J. and Konrad, J. M., "A generalized thermal conductivitymodel for soils and construction materials," Canadian Geotechnical Journal, Vol. 42, No. 2, pp. 443-458 (2005).
(21) Cull, J. P., “Thermal contact resistance in transient conductivity Measurements,” The Institute of Physics, Vol. 11, pp. 323-326 (1978).
(22) David, C., Menendez, B., and Darot, M., "Influence of stress-induced and thermal cracking on physical properties andmicrostructure of La Peyratte granite," International Journal of Rock Mechanics and Mining Sciences, Vol. 36, No. 4, pp. 433-448 (1999).
(23) Dewynter, V., Rougeault, S., Boussoir, J., Roussel, N., Ferdinand,P., and Wileveau, Y., "Instrumentation of borehole with fiber bragg grating thermal probes: Study of the geothermic behaviour of rocks," Bruges, Belgium, (2005).
(24) Faronki, O. T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol. 11, Trans. Tech. Publication, Germany (1986).
(25) Gori, F., Corasaniti, S., “Theoretical prediction of the soil thermal conductivity at moderately high temperatures,” Journal of Heat Transfer, Vol. 124, pp. 1001-1008 (2002).
(26) Gunn, D. A., Jones, L. D., Raines, M. G., Entwisle, D. C., and Hobbs, P. R. N., "Laboratory measurement and correction of thermal properties for application to the rock mass," Geotechnical and Geological Engineering, Vol. 23, No. 6, pp. 773-791 (2005).
(27) Gustafsson, S. E., “Transient plane source techniques for thermal conductivity and thermal diffivity measurements of solid materials,” Rev. Sci. Instrum., Vol. 62, pp.797-804 (1990).
(28) Gustavsson, J. S., Gustavsson, M., Gustafsson, S. E., "On the Use of the Hot Disk Thermal Constants Analyser for Measuring the Thermal Conductivity of Thin Samples of Electrically Insulating Materials," Proc. 24th Int. Thermal Conductivity Conf., Pittsburgh, USA (1997).
(29) Hartmann, A., Rath, V., and Clauser, C., "Thermal conductivity from core and well log data," International Journal of Rock Mechanics and Mining Sciences, Vol. 42, No. 7-8 SPEC ISS, pp.1042-1055 (2005).
(30) Hashin, Z. and Shtrikman, S, “A Variational Approach to the Theroy of the Effective Magnetic Permeability of Multiphase Materials, ” Journal of Applied Physics, Vol. 33, pp. 1514-1517 (1962).
(31) Hill, R., “A Self-Consistent Mechanics of Composite Materials, ” Journal of the Mechanics and Physics of Solids, Vol. 13, pp. 213-222 (1965).
(32) Huenges, E., Burkhardt, H., Erbas, K., "Thermal Conductivity Profile of the KTB Pilot Corehole, " Scientific Drilling, Vol.1, pp.224-230 (1990).
(33) Khan, M. I., “Factors affecting the thermal properties of concrete and applicability of its prediction models,” Building and Environment, Pergamon, pp.607-614 (2002).
(34) Krishnaiah, S., Singh, D. N., and Jadhav, G. N., "A methodology for determining thermal properties of rocks," International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, pp. 877-882 (2004).
(35) Lee, T. C., Henyey, T. L., and Damiata, B. N., “A simple method for the absolute measurement of thermal conductivity of drill cuttings,” Institute of Geophysics and Planetary Sciences, Vol. 51, No. 8, pp 1580-1584 (1986).
(36) Luo, M., Wood, J. R., and Cathles, L. M., "Prediction of thermal conductivity in reservoir rocks using fabric theory," Journal of Applied Geophysics, Vol. 32, No. 4, pp. 321-334 (1994).
(37) Maqsood, A., Kamran, K., and Gul, I. H., “Prediction of thermal conductivity of granite rock from porosity and density data at normal temperature and pressure: In situ thermal conductivity measurements,” Journal of Physics D: Applied Physics, Vol. 37, No.24, pp.3396-3401 (2004).
(38) Mclaughlin., R., “A study of the differential scheme for composite materials,” J. Eng Sci., pp.237-244 (1977).
(39) Milun, S., Kilic, T., and Bego, O., "Measurement of soil thermal properties by spherical probe," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 3, pp. 1219-1226 (2005).
(40) Naidu, A. D. and Singh, D. N., "Field probe for measuring thermal resistivity of soils," Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 2, pp. 213-216 (2004).
(41) Nusier, O. K. and Abu-Hamdeh, N. H., "Laboratory techniques to evaluate thermal conductivity for some soils," Heat and Mass Transfer/Waerme- und Stoffuebertragung, Vol. 39, No. 2, pp. 119-123 (2003).
(42) Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt, H., “Characterization of rock thermal conductivity by high-resolution optical scanning,” Geothermics, Vol. 28, No. 2, pp. 253-276 (1999).
(43) Singh, D. N., Kuriyan, S. J., and Manthena, K. C., “A generalized relationship between soil electrical and thermal resistivities,” Experimental Thermal and Fluid Science, Elsevier, pp. 175-181 (2000).
(44) Tarnawski, V. R., Gori, F., Wagner, B., Buchan, G. D., “Modelling approaches to predicting thermal conductivity of soils at high temperature,” International Journal of Energy Research, Vol. 24, pp. 403-423 (2000).
(45) Tarnawski, V. R., Leong, W. H., Gori, F., Buchan, G. D., Sundberg, J., “Inter-particle contact heat transfer in soil systems at moderate temperatures,” International Journal of Energy Research, Vol. 26, pp. 1345-1358 (2002).
(46) Tavman, I. H., "Effective thermal conductivity of granular porous materials," International Communications in Heat and Mass Transfer, Vol. 23, No. 2, pp. 169-176 (1996).
(47) Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., “Thermal Conductivity of Nonmetallic Solid, ” Thermophysical Properties of Matter, Vol. 2, IFI/plenum, New York-Washington (1970).
(48) Troschke, B. and Burkhardt, H., "Thermal conductivity models for two-phase systems," Physics and Chemistry of the Earth, Vol. 23, No. 3, pp. 351-355 (1998).
(49) Xie, L.-J., Schmidt, J., Schmidt, C., and Biesinger, F., “2D FEM estimate of tool wear in turning operation,” Institut for Werkzugmaschinen and Betriebstechnik, Universitat Karlsruhe, Germany (2004).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明