博碩士論文 943202044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.145.93.210
姓名 王巧吟(Chiao-Yin Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以現有規範初判粒料的鹼質與碳酸鹽反應活性之研究
(The study of scan for the aggregates if have ACR activity by going standard)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣擁有豐富的碳酸鹽類岩石,但台灣對鹼-碳酸鹽反應(ACR)的研究卻不多。本研究利用加拿大化學法(CSA A23.2-26A)普查可能具有ACR活性的粒料,規劃第二次取料的項目,再區分ASTM系統(ASTM C 586、ASTM C 1105、ASTM C 1293)、RILEM系統(RILEM TC 191-ARP-AAR-2、RILEM TC 191-ARP-AAR-5)、加拿大系統(CSA A23.2-26A、CSA A23.2-14A)、模擬中國蒸壓法進行粒料的ACR活性探討及在台灣地區的適用性分析,以微觀分析(SEM、XRD)輔助判別粒料活性,並以LiOH溶液區分粒料的AAR特性。結果顯示,具有ACR活性粒料共14種,其中二種同時具有ASR活性;ASTM及RILEM檢測粒料ACR活性系統均適合於台灣地區使用。綜合試驗結果,提出適用於台灣地區粒料ACR活性檢測的流程為,先以ASTM C 586或RILEM TC 191-ARP-AAR-5試驗法篩選粒料的ACR活性,判定為非活性粒料,可以直接用為混凝土用粒料,若判定具有ACR活性,在使用前應再經ASTM C 1105試驗作最終ACR活性判別,屬非活性方能使用。
摘要(英) There are many carbonate rocks in Taiwan, but less study of alkali-carbonate reaction (ACR) in Taiwan. The research use the Canada chemical method (CSA A23.2-26A) to embryonic exploration the aggregates which may have alkali-carbonate reaction, and plan for second collect the aggregates. We proceed to treat ACR activity of the aggregates and analyze the applicability in Taiwan by the system of ASTM(ASTM C 586、ASTM C 1105、ASTM C 1293)、the system of RILEM(RILEM TC 191-ARP-AAR-2、RILEM TC 191-ARP-AAR-5)、the system of Canada(CSA A23.2-26A、CSA A23.2-14A)、the imitate autoclave method of China. Use micro-analyses(SEM、XRD)to assist identify activity of the aggregate, and use LiOH solution to discriminate AAR characteristic of the aggregate. The result of test show there are fourteen kinds of aggregates have ACR activity, and two kinds among fourteen kinds of aggregates which have ACR activity all have ASR activity. The system of ASTM and RILEM both adaptable to use to identify the aggregates which have ACR in Taiwan. Composite the result of test, and advance the procedure which adaptable to identify the aggregates which have ACR in Taiwan. First, using ASTM C 586 or RILEM TC 191-ARP-AAR-5 to scan for the aggregates if have ACR activity. If the aggregate is identified have no ACR activity, it can direct use in concrete. If the aggregate is identified have ACR activity, it need use ASTM C 1105 to finally identify if have ACR activity, and check it have no ACR activity before used.
關鍵字(中) ★ 白雲岩
★ 石灰岩
★ 砂漿棒
★ 角柱
★ 鹼-碳酸鹽反應
關鍵字(英) ★ dolomite
★ limestone
★ Alkali-carbonate reaction
★ concrete prism
★ mortar-bar
論文目次 摘要 1
目錄 3
表目錄 6
圖目錄 7
第一章 研究動機內容及目的 1
1-1 研究動機 1
1-2 研究內容 2
1-3 研究目的 2
第二章 文獻回顧 3
2-1 鹼質與粒料反應分類及反應機理 3
2-1-1 鹼-氧化矽反應 3
2-1-2 鹼-矽酸鹽反應(Alkali-Silicate Reaction) 4
2-1-3 鹼-碳酸鹽反應 5
2-2 區分鹼-碳酸鹽反應與鹼-氧化矽反應的方法 9
2-3 鹼-碳酸鹽反應預防方法 10
2-4 鹼-碳酸鹽反應問題的預防策略 10
2-5 鹼-碳酸鹽反應鑑定方法介紹 11
2-5-1 ASTM系統 11
2-5-2 RILEM系統 13
2-5-3 加拿大系統 15
2-5-4 其他試驗方法 17
第三章 試驗規畫 25
3-1試驗計畫 25
3-1-1粒料採集 25
3-1-2 試驗方法與試驗流程 31
3-2 試驗材料 33
3-3 試驗器材 35
3-4 試驗步驟 36
3-4-1 粒料處理 36
3-4-2 ASTM系統 37
3-4-2 RILEM系統 40
3-4-3 加拿大系統 42
3-4-4 其他試驗法 44
第四章 試驗結果分析與討論 48
4-1 初期試驗 48
4-2 後續單一試驗結果分析 49
4-2-1 XRD 49
4-2-2化學法(CSA A23.2-26A) 58
4-2-3 ASTM系統 60
4-2-4 RILEM系統 61
4-2-5 模擬中國蒸壓法 63
4-2-6 LiOH判別 63
4-2-7 SEM 64
4-3 後續實驗結果比較 73
4-3-1 ASTM C 1105與其他試驗比較 74
4-4 綜合討論 85
4-4-1 台灣東部地區石灰岩粒料ACR活性判斷 85
4-4-2 各試驗對台灣東部地區鹼-碳酸鹽反應活性粒料判斷的適用性 87
第五章 結論與建議 89
5-1 結論 89
5-2建議 90
參考文獻 91
參考文獻 [1] Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
[2] 王韡蒨,「台灣地區活性粒料之檢測方法研究」,碩士論文,國立中央大學土木工程研究所,中壢,2003 年。
[3] Stanton, T.E., “Expansion of Concrete Through Reaction Between Cement and Aggregate,” Transactions, American Society of Civil Engineers, Vol.107, pp. 54-126, 1942.
[4] 李秋男,「利用蒸壓法研判本土粒料ASR活性之可行性研究」,碩士論文,國立中央大學土木工程研究所,中壢,2005 年。
[5] 林梓淞,「以迅速法對鹼-骨材反應確認之研究」,碩士論文,國立成功大學土木工程研究所,台南,2004年。
[6] Hobbs, D.W., “Alkali-Silica Reaction in Concrete,” Thomas Telford, London, U.K., p.83, 1988.
[7] 蔣元駒、韓素方,「混凝土工程病害與修補加固」,海洋出版社,北京,中國,pp.365-406,1996 年7 月。
[8] Tang, M.S. and Deng, M., “Progress on the studies of Alkali- Carbonate Reaction,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 51-59, 2004.
[9] Mitchell, L.D., Grattan-Bellew P.E., Margeson J., and Fournier B., “The Mechanistic Differences Between Alkali Silica and Alkali Carbonate Reactions as Studied by X-ray Diffraction,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 154-162, 2004.
[10] 錢光人,「巖石的結構特征與堿碳酸鹽反應」,博士論文,南京化工大學,1999年。
[11] Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implica- tions,” Canadian Journal of Civil Engineering, Vol. 27, No. 2, pp. 167-191, 2000.
[12] Hadley, D.W., “Alkali reactivity of carbonate rocks-expansion and dedolomitization,” Proceeding Highway Research Board, Vol.40, pp.462-474, 1961.
[13] Cody, R.D., Spay, P.G., Cody, A.M., and Gan, G.L., “The Role of Magnesium in Concrete Deterioration,” Final report, Iowa Dot HR-355, Iowa State University, 1994.
[14] Choquette, M., Berube, M.A., and Locat, J., “Behavior of Common Rock-Forming Minerals in a Strong Basic NaOH Solu- tion,” Canadian Mineralogist, Vol. 29, pp. 163-173, 1991.
[15] Rogers, C.A., Grattan-Bellew, P.E., Hooton, R.D., Ryell, J., and Thomas, M.D.A., “Alkali-Aggregate Reaction in Ontario,” Canad- ian Journal of Civil Engineering, Vol. 27, No. 2, pp. 246-260, 2000.
[16] Feng, N.Q., Feng, X.X., Niu, Q.L., Hao, T.Y., and Cai, J.W., “Study on the Method to Determine Alkaline-Carbonate Reactivity of Aggregates,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 307-313, 2004.
[17] Deng, M., Han, S.F., Lu, X.H., and Tang, M.S., “Deterioration of Concrete Structures due to Alkali-Dolomite Reaction in China,” Cement and Concrete Research, Vol. 23, pp. 1040-1060, 1993.
[18] Mei, L.B., Tang, M.S., and Deng, M., “Judgement of Alkali Reactivity for Siliceous Carbonate,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 393-398, 2004.
[19] Qian, G.G., Deng, M., and Tang, M.S., “Expansion of Siliceous and Dolomitic Aggregates in Lithium Hydroxide Solution,” Cement and Concrete Research, Vol. 32, pp. 763-768, 2002.
[20] Lu, D.Y., Fournier, B., and Grattan-Bellew, P.E., “Evaluation of the Chinese Accelerated Test for Alkali-Carbonate Reaction,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 386-392, 2004.
[21] Sommer, H., Grattan-Bellew, P.E., Katayama, T., and Tang, M.S., “Development and Inter-Laboratory Trial of the RILEM AAR-5 Rapid Preliminary Screening Test for Carbonate Aggregates,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 407-412, 2004.
[22] Wu, D.Y., and Fang, K.H., "The Research of Alkali Reactivity of Non-Siliceous Carbonate Aggregates," Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 453-457, 2004.
[23] Qian, G., Deng, M., Lan, X., Xu, Z, and Tang, M.S., "Alkali Carbonate Reaction Expansion of Dolomitic Limestone Aggregates with Porphyrotopic Texture," Engineering Geology, Vol. 63, pp. 17-29, 2002.
[24] Feng, N.Q., Feng, X.X., Hao, T.Y., and Niu, Q.L., “Research on the Suppressing of Expansion due to Alkali-Carbonate Reaction,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 518-527, 2004.
[25] “Evaluation and Repair of Concrete Structures - Specialized Repairs,” Engineering and Design, Concrete Repair Manual ,Vol. EM 1110-2-2000, pp. E-1-E-2, 1994.
[26] ASTM C 586, “Standard Test Method for Potential Alkali Reactivity of Carbonate Rocks as Concrete Aggregates (Rock-Cylinder Method),” 1999.
[27] CNS 13620 A3356,「碳酸鹽質岩石用作混凝土粒料之潛在鹼質反應性試驗法(岩石圓柱試體法)」,民國85年6月。
[28] ASTM C 1105, “Standard Test Method for Length Change of Concrete Due to Alkali-Carbonate Rock Reaction,” 1995.
[29] ASTM C 1293, “Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” 2001.
[30] Sims, I., Nixon, P.J., and Marion, A.M., “International Collaboration to Control Alkali-Aggregate Reaction:The Successful Progress of RILEM TC 106 and TC 191-ARP,” Proceeding of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp. 41-50, 2004.
[31] “RILEM Recommendation AAR-2:Detection of potential alkali-reacivity of aggregates - The ultra-accelerated mortar-bar test, “ Materials and Structures 33, pp. 283-293 , 2000.
[32] “RILEM Recommendation AAR-5:Rapid preliminary screening test for carbonate aggregates,” Materials and Structures 38, pp. 787-792, 2005.
[33] Tang, M.S, Lan, X.G., and Han, S.F., “Autoclave method for identification of alkali-reactive carbonate rock,” Cement and Concrete Composites, Vol.16, pp. 163-167, 1994.
[34] Mei L.B., Tang M.S., and Deng M., “Judgement of Alkali Reactivity for Siliceous Carbonate,” Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, pp.393-398, 2004.
[35] 黃偉慶,「精密儀器在土木工程材料上之應用-X光繞射分析」,中央大學土木系,2005
[36] Qian, G., Deng, M., and Tang, M., “ Expansion of Siliceous and Dolomitic Aggregates in Lithium Hydroxide Solution,” Cement Concrete Research 32, pp. 763-768, 2002.
[37] http://www.i-pi.com/~diana/slime/corrosion/dolomite/
[38] Tong, L., and Tang, M.S., “Expansion Mechanism of Alkali-Dolomite and Alkali-Magnesite Reaction,” Cement and Concrete Composites, Vol. 21(5-6), pp. 361-373, 1999.
指導教授 李釗(Chau Lee) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明