博碩士論文 943203008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.233.239.102
姓名 蔣祖武(Tsu-Wu Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 光能切離矽薄膜之研究
(Novel Thin Silicon Layer Transfer Technology Light-Cut)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 氮矽基鍵合之研究★ 以氫離子擴散機制製作單晶矽薄膜在石英上之研究
★ 矽單晶轉移薄膜層表面埃級平滑化之研究★ 薄膜電性效應對等離子體注入之影響研究
★ 350nm波長光能量輔助矽晶表面光電平滑化★ 異質材料(石英/矽)晶圓鍵合之薄膜應力模擬與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 矽薄膜轉移技術能創造出複合多種材質特性的基板,於現今半導體材料的發展上已是一不可或缺的技術,唯傳統的智切法進行矽薄膜轉移過程中將使用高溫加熱,在此一過程中將會產生熱應力,這會使得薄膜轉移的過程受到限制,轉移後的薄膜品質也會較差。
本研究主要探討利用光能照射來取代傳統的加熱過程,達到矽薄膜轉移的製程。首先將探討不同波長的光波對於矽氫化合物產生的作用,以了解其反應的機制。於實驗上則利用紅外光跟紫外光照射使佈植於矽晶圓中的氫離子產生反應,使矽晶圓中的氫離子能脫離矽原子的鍵結進而聚合成氫氣,達到分離的效應,使得矽薄膜能轉移至另一片晶圓上面,達成矽薄膜的轉移。
摘要(英) This dissertation studied a method for transferring of silicon thin layers from a first substrate onto a second substrate. Traditionally the first substrate implanted hydrogen and bonded with the second substrate. Using heat treatment to split the silicon thin layer by the formation which growth of hydrogen caused microcracks. In this process of substrates have a lot of thermal stress due to the substantially different coefficient of thermal expansion between these two substrates. To improve this process a new method using temperature lower than critical temperature and two kinds of wavelength light irradiate to split the thin layer by similar formation of hydrogen caused microcracks is be used. These two kinds of wavelength light’ frequency is located on infrared and ultraviolet range. By these two wavelength light irradiate hydrogen growth and overlapping in silicon will become easier. It is because ultraviolet light will let elections surround with silicon-hydrogen molecule excited and infrared light will let the vibration of silicon - hydrogen molecule stronger. As a result lower temperature at the silicon layer transfer is accomplished.
關鍵字(中) ★ 矽薄膜
★ 半導體
★ 光能
關鍵字(英) ★ silicon
★ semiconductor
★ light
★ thin film
論文目次 目 錄
中文摘要................................................I
英文摘要................................................Ⅱ
誌謝....................................................Ⅳ
目錄....................................................Ⅴ
圖目錄..................................................Ⅷ
表目錄.................................................ⅩⅠ
第一章 前言.............................................1
1.1研究背景..............................................1
1.2研究動機..............................................2
第二章 薄膜轉移技術......................................4
2.1 BESOI 薄膜轉移技術...................................4
2.2 ELTRAN薄膜轉移技術...................................4
2.3 離子佈植於薄膜轉移之應用.............................5
2.3.1智切法製程介紹(Smart-Cut Process)...................5
2.3.2 氫離子佈植於半導體中之現象.........................6
2.3.3 裂縫形成概述.......................................8
2.3.4氣泡破裂與剝離現象.................................10
2.4 智切法的問題與突破..................................10
第三章 絕緣層矽晶之優點及光波照射作用...................22
3.1絕緣層矽晶之優點.....................................22
3.2電磁波照射對矽晶圓之應用.............................24
3.2.1 紫外光照射對矽晶圓之應用..........................24
3.2.2 紅外光照射對矽晶圓之應用..........................26
第四章 絕緣層矽製作.....................................37
4.1絕緣層矽製作流程.....................................37
4.1.1 晶圓清潔及氧化層生長..............................37
4.1.2 多晶矽生成及離子植入..............................37
4.1.3 多晶矽層移除......................................38
4.1.4 晶圓鍵合及薄膜轉移................................38
4.2實驗設備.............................................40
第五章 結果與討論.......................................49
5.1 光能切離矽薄膜之結果及討論..........................49
5.1.1掃描式電子顯微鏡檢測之結果.........................49
5.1.2原子力顯微鏡檢測之結果.............................49
5.2 各項對照組之檢測結果................................50
5.3討論.................................................51
第六章 結論.............................................59
參考文獻................................................60
參考文獻 [1] C. Zemke et al., “Numerical Analysis of Parasitic Effects in Deep Submicron Technologies”, Synopsys, Inc., 2005
[2] Sangiorgi, E. et al., “Temperature dependence of latch-up phenomena in scaled CMOS structures”, IEEE Electron device letters, Vol.7, No. 1, JANUARY 1986
[3] G.K. Celler and S. Cristoloveanu “Frontiers of silicon-on-insulator”, J. of Appl. Phys., Vol. 93, No. 9, pp. 4955-4975, 2003
[4] Hong. Xiao, “Introduction to Semiconductor Coating Characterization”, M.S. Thsis, Univ. Manufacturing Technology, Prentice-Hall Inc., 1992
[5] Q.-Y. Tong et al., “Semiconductor Wafer Bonding: Science and Technology”, John Wiley&Sons, Inc., pp. 17-169, 1999
[6] G.L. Sun et al., “Cool plasma activated surface in silicon direct bonding technology”, J.de Physique, 49(C4), pp. 79, 1988
[7] M. Ito et al., “Scalability potential in ELTRAN (R) SOI-epi wafer SOI Conference”, 2000 IEEE International, 2000
[8] Tien-Hsi Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, pp.100-121, 1998
[9] T. Maurice et al., “Method of manufacturing a wafer”, US Patent 6,838,358 , Soitec, 2005
[10] J. Pille et al., “Implementation of the CELL Broadband Engine in a 65nm SOI Technology Featuring Dual-Supply SRAM Arrays Supporting 6GHz at 1.3V”, ISSCC, 2007
[11] T. Yonehara et al., “Epitaxial layer transfer by bond and etch back of porous Si”, Applied Physics Letters., Vol.64, pp.2108-2110, 1994
[12] T. Yonehara and K. Sakaguchi, “ELTRAN®; Novel SOI Wafer Technology ELTRAN”, JSAP International., No.4, pp.10-16, 2001
[13] M. Bruel, “Process for the production of thin semiconductor material films”, US Patent 5,374,56, Commissariat A l'Energie Atomique, 1992
[14] M. Bruel, “Silicon on insulator material technology”, Electron. Lett., Vol.31, pp.1201, 1995
[15] A. Tauzin et al., “Transfers of 2-inch GaN films onto sapphire substrates using Smart Cut/sup TM/technology, Electronics Letters”, Vol.41, No.11, IEE , 2005
[16] B. Aspar et a.l, “Smart-Cut (R) process using metallic bonding: Application totransfer of Si, GaAs, InP thin films”, Electronics Letters., Vol.35, pp.1024-1025, 1999
[17] U. Gosele et al., “III-V materials integration technologies: wafer bonding approaches”, Indium Phosphide and Related Materials,. Conference, 2000
[18] T. H. Lee, Q. Y. Tong, Y. L. Chao, L. J. Huang and U. Gosele, “Silicon on quartz by a Smarter Cut process”, Electrochem. Soc. Proceeding of the 8th International Symposium of Silicon-on-Insulator Technology and Devices, Pennington, NJ, USA, pp. 27-32, 1997
[19] Q. Y. Tong, R Scholz, U. Gösele, T. H. Lee, A“smarter-cut” approach to low temperature silicon layer transfer, Applied Physics Letters”, Vol.72, pp.49-51, 1998
[20] M. Bruel et al., ”Smart cut: a promising new SOI material technology”, SOI Conference, Oct., pp178-179, 1995
[21] J. I. Pankove and N. M. Johnson., “Hydrogen in Semiconductors”, Semiconductors and Semimetetals 34, NY, Academic, 1991
[22] S. Estreicher et al., “First-principles calculations of vibrational lifetimes in silicon ”, Texas Tech University, 2006
[23] M. Budde et al., “Vibrational dynamics of bond-center hydrogen in crystalline silicon”, American Physical Society, Vol.63, pp.195203-1 - 195203-18, 2001
[24] Eugene E. Haller, “Hydrogen in crystalline semiconductors”, Semicond. Sci. Technol.6, pp.73-84, 1991
[25] Jing Wang et al., “Microstructure evolution of hydrogen-implanted silicon during the annealing process”, Microelectronic Engineering, 66, pp. 314-319, 2003
[26] S. Romani and J.H. Evans, “Platelet Defects in Hydrogen Implanted Silicon”, Nucl. Instr and Meth. Phys. Res. B., Vol.44, pp. 313-317, 1990
[27] GF. Cerofolini et al., “Structure and evolution of the displacement field in hydrogen-implanted silicon”, Phys. Rev. B., Vol.41, pp.607-618, 1990
[28] G. F. Cerofolini et al., “Hydrogen-related complexes as the stressing species in high-fluence hydrogen-implanted, single-crystal silicon”, Phys. Rev. B., Vol.46, 2061–2070, 1992
[29] KJ. Chang and DJ Chadi, “Hydrogen bonding and diffusion in crystalline silicon”, Phys. Rev. B., Vol.40, pp.644-653, 1989
[30] Chris G. Van de Walle et al., “Theory of hydrogen diffusion and reactions in crystalline silicon”, Phys. Rev. B., Vol.39, 10791–10808, 1989
[31] NH. Nickel et al., “Nucleation of hydrogen-induced platelets in silicon”, Physical Review B., Vol.62, pp.8012-8015, 2000
[32] J. Grisolia et al., “Kinetic aspects of the growth of platelets and voids in H implanted Si”, Physics Research, B., Vol.178, pp.160-164, 2001
[33] NC. Bartelt et al., “Ostwald ripening of two-dimensional islands on Si (001)”, Physical Review, B., Vol.54, pp.741-751, 1996
[34] K. Mitani and U. Gosele, “Formation of interface for preventing thermal bubbles in silicon wafer bonding”, Appl. Phys. A, 54, pp. 543-552, 1992
[35] MK Weldon et al., “On the mechanism of the hydrogen-induced exfoliation of silicon ”, J. Vac. Sci. Technol., vol. B 15, pp. 1065–1073, 1997
[36] T. H. Lee, “Manufacturing method of a thin film on a substrate”, US Patent 6,486,008, 2002
[37] JT Borenstein et al., “Kinetic model for hydrogen reactions in boron-doped silicon”, J. Appl. Phys., 73, 2751–2754, 1993
[38] G. Gawlik et al., “GaAs on Si: towards a low-temperature 'smart-cut' technology”, APPLIED PHYSICS., Vol.70, pp. 103-107(5), 2003
[39] G. Gawlik et al., “Hydrogen Ion Implantation in GaAs”, Vacuum, 63, 697-700, 2001
[40] J.H. Lee and S. Cristoloveanu “Accurate technique for CV Measurements on SOI structures excluding parasitic capacitance effects”, Electron Device Letters, Vol. EDL-7, No.9, IEEE, pp.537-539, 1986
[41] Sangiorgi, E et al., “Temperature dependence of latch-up phenomena in scaled CMOS structures”, IEEE Electron device letters, vol. EDL-7, No. 1, JANUARY, pp.28-31, 1986
[42] F.S Shoucair, “High-temperature latchup characteristics in VLSI CMOS circuits”, Electron Devices, vol.35, pp.2424-2426, 1989
[43] P. Hazucha et al., “Impact of CMOS process scaling and SOI on the soft error rates of logic processes”, VLSI Technology, pp73-74, 2001
[44] S. Veeraraghavan and J.G. Fossum “Short-channel effects in SOI” MOSFETs”, Electron Devices, Vol.36, No.3, pp.522-528, 1989
[45] G. G. Shahidi., “SOI technology for the GHz era”, IBM J. RES. & DEV. Vol.46 NO.2/3 March/May, pp.122-131, 2002
[46] J. Ruzyllo et al., “Preoxidation UV Treatment of Silicon Wafers”, Journal of The Electrochemical Society, Vol.134, NO.8, pp.2052-2055, 1987
[47] Dirk M and J Wijdenesa, “Method of manufacturing a thin silicon-oxide layer”, US Patent 5,622,896, U.S. Philips Corporation, 1997
[48] S.L. Holl et al., “UV Activation Treatment for Hydrophobic Wafer Bonding”, Journal of The Electrochemical Society, May 5, pp.G613-616, 2006
[49] D. E. Milligan and M.E. Jacox “Infrared and Ultraviolet Spectra of the Products of the Vacuum-Ultraviolet Photolysis of Silane Isolated in an Argon Matrix”, The Journal of Chemical Physics, Vol.52, Issue 5, pp. 2594-2608, 1970
[50] A.V. Baklanov and L.N. Krasnoperov “UV Absorption Spectrum and Rate Constant for Self-Reaction of Silyl Radicals”, J. Phys. Chem., Vol. 105, pp.4917-4922, 2001
[51] L. C. Lee and M. Suto “Quantitative photoexcitation study of SiH in vacuum ultraviolet”, The Journal of Chemical Physics, February 1, Vol. 84, Issue 3, pp. 1160-1164, 1986
[52] W.P. Maszara, “Silicon-on-insulator by wafer bonding”, J. Electrochem. Soc., 123, 341, 1991
[53] M.A. Schmidt, “Wafer-to-wafer bonding for microstructure formation”, Proceedings of the IEEE, Vol.86, No.8, pp.1575-1585, 1998
[54] S.K. Loh and J.M. Jasinski, “Direct kinetic studies of SiH3+SiH3, H, CCl4, SiD4, Si2H6, and C3H6 by tunable infrared diode laser spectroscopy”, The Journal of Chemical Physics, Vol.95, pp.4914-4926, 1991
[55] L.S. Sidhu, “Infrared vibration spectra of hydrogenated, deuterated, and tritiated amorphous silicon”, Journal of Applied Physics, Vol.85, No.5, pp.2574-2578, 1999
[56] Ping-Hei Chen et al., “The characteristic behavior of TMAH water solution for anisotropic etching on both Silicon substrate and SiO2 layer Sensors and Actuators”, Sensors and Actuators A: Physical, Vol.93, pp.132-137, 2001
[57] R. L. Pecsok and L. D. Shields “IR Spectroscopy”
http://www.wag.caltech.edu/home/jang/genchem/infrared.htm
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2007-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明