博碩士論文 943203009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.17.183.24
姓名 王順武(Shun-wu Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 製程參數對引洞成長之碳奈米管電阻的影響
(Effect of process parameters on the resistance of carbon nanotube vias)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用IC製程中曝光微影的方式,在矽晶圓上定義出內連線(Interconnect)的引洞結構(Via),並且使用微波電漿化學氣相沉積系統(Microwave plasma chemical vapor deposition, MPCVD)從引洞結構中成長出碳奈米管(Carbon nanotube),達到控制碳奈米管定位成長之目的,並且利用碳奈米管取代金屬導線作為內連線導線。製作內連線引洞結構時,分別設計在相同面積的範圍下,有單一引洞結構與陣列引洞結構並且使用三種不同金屬材料鈦(Ti)、鉭(Ta)與鋁(Al)作為下電極,最後沉積上電極金屬Ti、Ta或Al與碳奈米管連結形成二極體元件。再利用掃描式電子顯微鏡(SEM)、拉曼光譜儀(Raman spectroscopy)和I-V量測系統,分別探討在不同製程參數下,所成長之碳奈米管的形態與石墨化程度對其二極體元件電性的影響,並且比較三種不同下電極金屬(Ti、Ta與Al)在相同面積的範圍下,單一引洞與陣列引洞結構對二極體元件其電性的差異。
為了配合IC製程和鋁本身的融點,本實驗採用低溫製程,溫度從350 ℃到500 ℃,利用施加負偏壓來幫助碳管成長;由實驗結果發現碳奈米管的直徑隨著基板溫度與負偏壓的增加而逐漸減小;而且隨著基板溫度與施加負偏壓的增加,實驗中所成長的碳奈米管石墨化程度有逐漸增加的趨勢,元件的電阻值也較低。在相同面積下,陣列引洞結構之元件的電阻值,比單一引洞結構之元件的電阻值還小;而且在相同的製程參數下,以Ti為二極體元件的下電極時,其電阻值比Ta或Al為下電極時所量測到的電阻值還小;本實驗還採用不同的上電極材料Ti、Ta和Al做比較,上電極為Ti時,其電阻值和Ta差不多,但是比Al為上電極所量測到的電阻值還小。因此,本實驗中以Ta為上電極,Ti為下電極,基板溫度為500 ℃,前處理電漿功率為1200 W,前處理時間5 min,成長電漿功率為1200 W,成長時間15 min,甲烷氣體流量比例為30 %、負偏壓為200 V時,所成長的碳奈米管其石墨化程度最好(38 %),並且量測到其二極體元件的電阻值也是最低(71Ω)。
摘要(英) This research is using integrated-circuit(IC)photolithography to manufacture the structure of interconnect via in silicon wafer. We use microwave plasma chemical vapor deposition(MPCVD)to grow carbon nanotubes(CNTs)in the via to control the growth of vertically in-situ carbon nanotubes and achieve replacing the metal in the via with CNTs. We design a single-via and array-via in the same region with three different metals(Ti, Ta and Al)bottom electrode. Finally, we deposit the top electrode with Ti, Ta or Al to connect with CNTs to form CNT diode structure. Then we use SEM, Raman spectroscopy, and I-V system to analysis diode structure. We discuss the effect of process parameters on the properties and the diode resistances of CNTs in single and array via, and compare the conductive performance of diode with Ti , Ta and Al bottom electrode.
This research is using low temperature manufacture to match up the IC manufacture and aluminum melting point. The temperature which we selected from 350℃ to 500 ℃ and we use bias to increase the growth of CNTs. From the result, We find that multi-wall carbon nanotube(MWNT) diameter decreases with increase of substrate temperature and bias; and the degree of graphitization of MWNTs increases with the increase of substrate temperature and bias. Consequently, the diode resistance of MWNTs in both single and array vias decreases with the increase of MWNT graphitization. In the same via region, the MWNT diode resistances of the array vias are lower than those of the single vias; the MWNT diode resistances with the Ti bottom electrode are lower than those with the Ta or Al bottom electrode. And we also select diffecent top electrode with Ti, Ta and Al, and then compare it. The diode resistance with Ti top electrode are almose the same with Ta top electrode and lower with Al top electode. Thus, in this research we use Ta top electode and Ti bottom electode, PP: 1200 W, PG: 1200 W, Temp. : 500 ℃, CH4 flow ratio: 30%, and bias: 200 Volt, we measure the best degree of graphitization (38%) and the lowest MWNT diode resistance (71 Ω).
關鍵字(中) ★ 內連線
★ 碳奈米管
★ 引洞結構
★ 電阻
關鍵字(英) ★ integrated-circuit(IC)
★ resistance
★ via
★ interconnect
★ carbon nanotubes
論文目次 摘要 i
英文摘要 iii
謝誌 v
總目錄 vi
圖目錄 viii
表目錄 xiv
符號說明 xv
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 文獻回顧 5
2-1 碳奈米管的起源 5
2-2 碳奈米管的結構 8
2-3 碳奈米管之成長機制 12
2-4 碳奈米管之合成技術 13
2-5 碳奈米管之特性與應用 18
第三章 實驗方法與設備 24
3-1 實驗流程 24
3-2 二極體元件製作流程 26
3-3 實驗儀器簡介 31
3-4 碳奈米管品質的分析方法 36
3-5 Surface energy的介紹 38
第四章 結果與討論 40
4-1 製程參數對碳奈米管型態的影響 40
4-1-1 前處理時間對碳奈米管型態的影響 41
4-1-2 基板溫度對碳奈米管型態的影響 42
4-1-3 負偏壓對碳奈米管型態的影響 43
4-2 製程參數對碳奈米管石墨化程度的影響 44
4-2-1 前處理時間對碳奈米管石墨化程度的影響 44
4-2-2 基板溫度對碳奈米管石墨化程度的影響 45
4-2-3 負偏壓對碳奈米管石墨化程度的影響 45
4-3 以碳奈米管所製作出的二極體元件其電性的探討 46
4-3-1 碳奈米管型態對二極體元件電性的影響 46
4-3-2 碳奈米管石墨化程度對二極體元件電性的影響 48
4-3-3 在相同範圍面積下陣列引洞結構與單一引洞結構所
成長碳奈米管對二極體元件電性的影響 50
4-3-4 不同下電極金屬對二極體元件電性的影響 52
4-4 利用等效電路來分析陣列引洞結構其電阻值 53
第五章 結論 99
參考文獻 100
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354(1991)56
[2] M. F. Yu et al., “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science, 287 (2000) 637
[3] M. F. Yu et al., “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties”, Physical Review Letters, 84 (2000) 5552
[4] J. Z. Liu et al., “Mechanical properties of single-walled carbon nanotube as bulk materials”, Journal of Mechanics and Physics of solids, 53 (2005) 123
[5] K. B. K. Teo et al., “Catalytic synthesis of carbon nanotubes and nanofibers”, Encyclopedia of Nanoscience and Nanotechnology, (2003) 1
[6] K. B. K. Teo et al., “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proc.-Circuits Devices Syst.(2004)408
[7] A. Jacey, J. Guo et al., “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics”, Nano Letters, 4 (2004) 447
[8] K. Tsukagoshi et al., “Carbon nanotube devices for nanoelectronics”, Physics B, 323 (2002) 107
[9] S. B. Lee et al., “Study of muti-walled carbon nanotube structures fabricated by PMMA suspended dispersion”, Microelectronic Engineering, 61-62 (2002) 475
[10] K. B. K. Teo et al., “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proc.-Circuits Devices Syst., (2004) 408
[11] A. K. M. F. Kibria et al., “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, 26(2001)823
[12] G. E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake”, Nano Letters, 1(2001)531
[13] Hao Tang et al., “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation”, Materials Chemistry and Physics Volume: 92, Issue: 2-3, (2005) 548-553
[14] Z. Dehouche et al., “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates”, Nanotechnology, 16(2005)402
[15] J. N. Wohlstadter et al. “Carbon nanotube-based biosensor”, Advanced Materials, 15 (2003) 1184
[16] P. He, L. Dai, “Aligned carbon nanotube-DNA electrochemical sensors”, Chem. Commun., (2004) 348
[17] J. J. Gooding, “Nanostruturing electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing”, Electrochimica Acta, 50 (2005) 3049
[18] Y. Cheng, O. Zhou, “Electron field emission from carbon nanotubes”, C. R. Physique, 4 (2003) 1021
[19] J. A. Misewich et al., “Electrically induced optical emission from a carbon nanotune FET”, Science, 300 (2003) 783
[20] R. K. Gupta, I. Dwivedy, ”International patenting activity in the field of carbon nanotubes”, Current Applied physics, 5 (2005) 163
[21] M.J. Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett., 62(1993)202
[22]Ho Jung Hwang, Jeong Won Kang, “Carbon-nanotube-based nano-electromechanical switch”, Physical E27, (2005) 163-175
[23] Kreupl F. et al., “Carbon nanotubes in interconnect applications”, Microelectron Eng., 64(2002)399
[24] J. Li et al., “Bottom-up approach for carbon nanotube interconnects”, Appl. Phys. Lett., 82(2003)2491
[25] N. Srivastava, K. Banerjee, “Interconnect challenges for nanoscale electronic circuits”, Jom, 56(2004)30
[26]B. Q. Wei et al.,”Reliability and current carrying capacity of carbon nanotubes,” Appl. Phys. Lett., v 79, (2001) p1172-1174
[27] S. Frank et al., “Carbon nanotube quantum resistors”, Science, 280(1998)1744
[28] 網頁資料Http://www.future-fab.com/documents.asp
[29] 楊正杰, 奈米通訊第七章第四期
[30] Proceeding of Meeting of the International Technology Roadmap for Semiconductors ( ITRS ), December 2006
[31]J. Phys. Chem, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, v 109, n 21,(2005) p 10957-10961
[32] S. Iijima, T.Ichihashi, Nature, 363(1993)603
[33] D.S. Bethune, C.H. Kiang, M.S. Deveries, Nature, 363(1993)605
[34]Wolfgang Hoenlein et al., ”Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies, v27, (2004) n4
[35]Rice University:Rick Smalley’s Group Home Page-Image Gallery
[36] T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐J. Phys. Chem. B, 104(2000)2794
[37] 網頁資料 Http://endomoribu.shinshu-u.ac.jp/research/cnt/composit.html
[38] 網頁資料 Http://theor.jinr.rudisordernano.html
[39] TH. Henning, F. Salama, “Carbon in the universe”, Science, 282(1998)2204
[40] 成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司
[41] Saito et al., Appl. Phys. Lett., 60 (1992) 2204
[42] R. T. K. Baker, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis, 26 (1972) 51
[43] Y.S. Park et al., “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, 126(2002)245
[44] T.W. Ebbesen et al., “Purification of nanotubes”, Nature, 367(1994)519
[45] M.J. Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure”, Appl. Phys. Lett., 62(1993)202
[46] Sergei Lebedkin et al., “Single-wall carbon nanotubes with diameters approaching 6 nmobtained by laser vaporization,” Carbon, 40 (2002) 417–423
[47] A. Thess et al., ”Crystalline ropes of metallic carbon nanotube,” Science, 273 (1996) 483
[48] R. Andrewsa, D. Jacques, “Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization”, Chem. Phys. Lett., 303(1999)467
[49] J.H. Han et al., “Effects of growth parameters on the selective area growth of carbon nanotubes”, Thin Solid Films, 409(2002)126
[50]Y.S. Woo et al., “In situ diagnosis of chemical species for the growth of carbon nanotubes in microwave plasma-enhanced chemical vapor deposition”, Diamond and Related Materials, 11(2002)59
[51]粘正勳,國立中央大學物理系。網頁資料
http://www.ncu.edu.tw/~ncu7450/nanoedu/nanoeducation-course.php
[52]網頁資料Http://taiwan.cnet.com
[53] Proceeding of Meeting of the International Technology Roadmap for Semiconductors ( ITRS ), December 2002
[54] R. Martel et al., “Singleand multi-wall carbon nanotube field-effect transistor”, Applied Physics Letters, 73 (1998) 2447
[55] Y. Zhang et al., “Electric-field-directed growth of aligned single-walled carbon nanotube”, Applied Physics Letters, 79 (2001) 3155
[56] 網頁資料 http://www.ipt.arc.nasa.gov/Graphics/rdd_talk.pdf
[57] 網頁資料Http://www.nanoscience.com
[58] Dai HJ, Hafner JH, Rinzler AG, et al. Nature, 147(1996)384
[59] Jing Kong et al., “Nanotube Molecular Wires as Chemical Sensors”, Science, (2000)287
[60] Wei BQ, Vajtai R, Ajayan PM, “Reliability and current carrying capacity of carbon nanotube”, Appl Phys Lett, 79(2001)1172
[61] Kim P, Shi L, Majumdar A, McEuen PL, “Thermal transport measurements of individual multiwalled nanotubes”, Phys Rev Lett, 87(2001)215502
[62] W.A. Zisman, Adv. Chem., 43 (1964) 1
[63] F.M. Fowkes, Adv. Chem., 43 (1964) 1
[64] S. Wu, Adv. Chem., 43 (1964) 1
[65] D.K. Owens, R.C. Wendt, J. Appl. Polymer Sci., 13 (1969) 1741
[66] KUIXIANG MA et al., “Surface Energy of Thermotropic Liquid Crystalline Polyesters and Polyesteramide”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 36, (1998) 2327–2337
[67]Ruth Y. Zhang et al., ”Chemical vapor deposition of single-Walled carbon Nanotubes Using Ultrathin Ni/Al Film as Catalyst”, Nano letter, Vol.3, (2003) 731-735
[68] Se-Jin Kyung et al., “Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature”, Carbon, 44(2006)1530
[69] Matthew R. Maschmann et al., ”Freestanding vertically oriented single-walled carbon”, Carbon, (2006) 2758–2763
[70] F. Wakaya, K. Katayama, K. Gamo, “Contact resistance of multiwall carbon nanotubes”, Microelectronic Engineering, 67(2003)853
[71] M.P. Anantram, “Coupling of carbon nanotubes to metallic contacts”, Phys. Rev. B, 14(2000)221
[72] D.J. Yang et al., “Thermal and electrical transport in multi-walled carbon nanotubes”, Physics Letters A, 329(2004)207
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2007-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明