博碩士論文 943203033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.235.30.155
姓名 鄭守鈞(Shou-Chiun Jeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以氫離子擴散機制製作單晶矽薄膜在石英上之研究
(Fabrication of a Single-Crystalline Silicon Thin Film on Quartz Using Hydrogen Ion Diffusion)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
★ 矽單晶轉移薄膜層表面埃級平滑化之研究★ 薄膜電性效應對等離子體注入之影響研究
★ 350nm波長光能量輔助矽晶表面光電平滑化★ 異質材料(石英/矽)晶圓鍵合之薄膜應力模擬與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石英上覆矽 (Silicon on Quartz, SOQ) 因其優越的材料特性,將是未來應用於研製高效能與省電的先進電子或光電元件不可獲缺的材料之一。雖然已有幾篇文獻指出一些製作SOQ晶圓可行的方法,但是這些方仍存在著許多缺點,還需更進一步的改善。在本篇論文研究,主要是開發出,以一創新製程方法,在低溫下將一厚度可被控制的單晶矽薄膜轉移至石英上製作出SOQ晶圓,而不需使用到傳統的背向蝕刻或離子佈植製程。此創新製程最關鍵的步驟就是,在電漿氫化過程中,應用磊晶矽層與深埋硼鍺摻雜矽層之間的界面,而使擴散氫離子可被捕捉住在特定深度的磊晶界面處。被電漿氫化過後的試片馬上以電漿活化晶圓鍵合技術與另一石英晶圓鍵合在一起,再施以150 °C退火來增加鍵合強度。之後經由180 °C退火而使磊晶界面處產生許多初始微裂縫,接著使用機械力誘導,迫使破裂面延著脆弱的磊晶界面進行,而成功的在室溫下將單晶矽薄膜轉移至石英上。從二次離子質譜儀結果可知,有大量的擴散氫離子聚集在磊晶界面處。由橫截面TEM與SEM圖可觀察出,在石英上的轉移單晶矽層大約有715奈米的厚度,而這厚度也約與一開始在硼鍺摻雜矽層上的磊晶矽層厚度一致,且此轉移矽層的沒有任何的晶格損傷。根據AFM的量測結果指出,最終的SOQ表面是相當的光滑平整。本次實驗能成功在低溫下將單晶矽薄膜轉移至石英上而製作出SOQ材料主要的因素可能是在於,磊晶界面處存在有大量的硼摻雜,因為硼有吸附複數個氫離子的能力且硼又可當做催化劑降低表面剝離或是薄膜轉移的溫度。
摘要(英) Silicon on quartz (SOQ) wafer depending on its superior characteristics is an excellent candidate for fabricating future advanced electronic or electro-optical devices with high performance and low power consumption. Although previous reports have demonstrated several feasible methods for manufacturing SOQ wafers, some disadvantages still remain and need to be improved. In this study, an innovative approach has been developed to transfer a thickness-controlled single-crystalline thin Si layer at low temperature for the fabrication of SOQ wafers without using etch back or ion implantation process. The technique utilized the interface between an epitaxial Si layer over a buried Boron/Germanium (B/Ge) doped Si layer to provide hydrogen trapping sites at a specific depth during plasma hydrogenation. The hydrogenated epitaxial Si wafer was subsequently bonded to another quartz wafer using plasma-activated wafer bonding technique, followed by thermal annealing at 150 oC so as to enhance the bonding strength. Successful Si layer transfer from epitaxial Si wafer onto quartz wafer was conducted by initial microcrack formations at the interface after annealing at 180 oC and subsequent mechanically induced crack propagations along the interface at room temperature. Diffusing hydrogen ions could accumulate enormously at the interface, as indicated from SIMS result. Cross-sectional TEM and SEM have shown that the thickness of the transferred Si layer on quartz, ~715nm, was almost consistent with that of the epitaxial Si layer over B/Ge doped Si layer and the top transferred Si layer was free of lattice damage. According to AFM measurement, the surface of final SOQ was smooth and uniform. The existing heavy boron dopants at the interface region are believed to contribute to this successful low temperature layer transfer for making SOQ materials and, as a result, that boron could attract multiple hydrogen ions and serve as a catalytic to alleviate annealing temperature for surface blistering or layer splitting.
關鍵字(中) ★ 薄膜轉移
★ 晶圓鍵合
★ 電漿
★ 氫擴散
★ 石英上覆單晶矽
★ 磊晶
★ 摻雜
關鍵字(英) ★ doping
★ Layer transfer
★ hydrogen diffusion
★ wafer bonding
★ epitaxy
★ plasma
★ silicon on quartz
論文目次 Chinese Abstract i
Abstract ii
Acknowledgements iii
List of Figures vii
List of Tables x
1. Introduction 1
1.1 Research Background 1
1.2 Research Motivations and Objectives 2
2. Literature Reviews 4
2.1 Conventional Layer Transfer Methods 4
2.1.1 Bonding and Etch-back Method 4
2.1.2 Smart-Cut® Process 5
2.1.3 ELTRAN® Method 6
2.2 Hydrogen Diffusion in Silicon 8
2.2.1 Diffusion Equations 8
2.2.2 Hydrogen Diffusion in Silicon at Low Temperature 10
2.2.3 Kinds of Hydrogen Diffusion Paths in Silicon at Low Temperature 12
2.2.4 Models for Hydrogen Diffusion in Silicon 13
2.3 Mechanisms of Boron as Hydrogen-trapping Sites 15
2.3.1 General Knowledge 15
2.3.2 Microscopic B-H Complex Structure 16
2.3.3 Evidences for H Trapping Ability of Boron 16
2.4 Mechanisms of Layer Splitting and Surface Blistering 18
2.4.1 Hydrogen-related Defects Introduced by Plasma Hydrogenation versus Hydrogen Ion Implantation 18
2.4.1.1 Hydrogen-related Defects in the Plasma Hydrogenation case 18
2.4.1.2 Hydrogen-related Defects in the H Ion Implantation case 19
2.4.2 General Knowledge 19
2.4.2.1 Basics of Blistering and Splitting 19
2.4.2.2 Dynamics of Layer Splitting Process 21
2.5 Advanced Silicon Layer Transfer by Plasma Hydrogenation 22
3. Experiments 34
3.1 Silicon Layer Transfer 35
3.1.1 Sample Preparation 35
3.1.2 Plasma Hydrogenation and Wafer Bonding 35
3.1.3 Layer Transfer 36
3.1.4 Sample Analysis 36
3.2 Silicon Surface Blistering 37
3.2.1 Sample Preparation 37
3.2.2 Plasma Hydrogenation 37
3.2.3 Annealing 37
3.2.4 Sample Analysis 38
3.3 Experimental Apparatus 38
3.3.1 AtomFloTM 250D Atmospheric Pressure Plasma Jet 38
3.4 Analytical Apparatus 38
3.4.1 Field Emission-Scanning Electron Microscope 38
3.4.2 Transmission Electron Microscopy 39
3.4.3 Atomic Force Microscope 40
3.4.4 Secondary Ion Mass Spectroscopy 40
4. Results and Discussions 48
5. Conclusions 65
6. References 66
參考文獻 [1] Q.-Y. Tong, U. Gosele, T. Martini and M. Reiche, “Ultrathin single-crystalline silicon on quartz (SOQ) by 150 °C wafer bonding”, Sensors and Actuators A 48, 117 (1995).
[2] T. Abe, K. Sunagawa, A. Uchiyama1, K. Yoshizawa1 and Y. Nakazato1, “Fabrication and bonding strength of bonded silicon-quartz wafers”, Jpn. J. Appl. Phys. 32, 334 (1993).
[3] K. R. Sarma and C. S. Chanley, U.S. Patent No. 5,258,323 (1993).
[4] M. S. Liu, K.-L. Lo, and K. R. Sarma, U.S. Patent No. 5,536,950 (1996).
[5] D. G. Hopper, “High resolution displays and roadmap”, Proc. 2000 ICAT, 215 (2000).
[6] T. Morita, "An overview of active matrix LCDs in business and technology", Proc. 2nd Int. Workshop AMLCDs, 1 (1995).
[7] F. Brunier, O. Rayssac, I. Cayrefourcq, H. Oka, T. Sato et al., “Silicon single crystal on quartz: fabrication and benefits”, Proc. 2003 IEEE Int. SOI Conf., 59 (2003).
[8] K. R. Sarma and S. T. Liu, “Silicon-on-quartz for low power electronic applications”, Proc. 1994 IEEE Int. SOI Conf., 117 (1994).
[9] C. Mazure, I. Cayrefourcq, B. Ghyselen, F. Letertre, and C. Maleville, “Moving from today's SOI to advanced substrate engineering”, Solid State Tech. 46, 111 (2003).
[10] K. Egami, M. Kimura, and T. Hamaguchi, “Laser recrystallization of silicon stripes in SiO2 grooves with a polycrystalline silicon sublayer”, Appl. Phys. Lett. 43, 1023 (1983).
[11] Q.-Y. Tong, G. Cha, R. Gafiteanu, and U.Gosele, “Low temperature wafer direct bonding”, J. Microelectromech. Syst. 3, 29 (1994).
[12] Q.-Y. Tong, T.-H. Lee, L.-J. Huang, Y.-L. Chao, and U. Gosele, “ Low temperature Si layer splitting”, Proc. 1997 IEEE Int. SOI Conf., 126 (1997).
[13] Q.-Y. Tong, R. Scholz, U. Gosele, T.-H. Lee, L.-J. Huang et al., “A “smarter-cut” approach to low temperature silicon layer transfer”, Appl. Phys. Lett. 72, 49 (1998).
[14] K. Henttinen, T. Suni, A. Nurmela, H. V. A. Luoto, I. Suni, et al., “Transfer of thin Si layers by cold and thermal ion cutting”, J. Mat. Sci. Mat. in Electron. 14, 299 (2003).
[15] X. Shi, K. Henttinen, T. Suni, I. Suni, and M. Wong, “Characteristics of transistors fabricated on silicon-on-quartz prepared using a mechanically initiated exfoliation technique”, IEEE Elec. Dev. Lett. 26, 607 (2005).
[16] J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies”, Appl. Phys. Lett. 48, 78 (1985).
[17] W. P. Maszara, G. Goetz, A. Caviglia, and J. B. McKitterick, “Bonding of silicon wafers for silicon-on-insulator”, J. Appl. Phys. 64, 4943 (1988).
[18] M. Bruel, “Silicon on insulator material technology”, Electron. Lett. 31, 1201 (1995).
[19] Q.-Y. Tong and U. Gosele, “Semiconductor Wafer Bonding: Science and Technology”, John Wiley & Sons, (1999).
[20] M. Bruel, U.S. Patent No. 5,374,564 (1994).
[21] M. Bruel, B. Aspar and A. Auberton-Herve, "Smart-Cut: A new silicon on insulator material technology based on hydrogen implantation and wafer bonding", Jpn. J. Appl. Phys. 36, 1636 (1997).
[22] Q.-Y. Tong, T.-H. Lee, L.-J. Huang, Y.-L. Chao, and U. Gosele, “Si and SiC layer transfer by high temperature hydrogen implantationand lower temperature layer splitting”, Electron. Lett. 34, 407 (1998).
[23] Q.-Y. Tong, K. Gutjahr, S. Hopfe, U. Gosele, and T.-H. Lee, “Layer splitting process in hydrogen-implanted Si, Ge, SiC, and diamond substrates”, Appl. Phys. Lett. 70, 1390 (1997).
[24] I. Radu, I. Szafraniak, R. Scholz, M. Alexe, and U. Gosele, “Low-temperature layer splitting of (100) GaAs by He+H co-implantation and direct wafer bonding”, Appl. Phys. Lett. 82, 2413 (2003).
[25] Q.-Y. Tong, Y.-L. Chao, L.-J. Huang, and U. Gosele, “Low temperature InP layer transfer”, Electron. Lett. 35, 341 (1999).
[26] A. J. Pitera, G. Taraschi, M. L. Lee, C. W. Leitz, Z.Y. Cheng, and E. A. Fitzgerald, “Coplanar integration of lattice-mismatched semiconductors with silicon by wafer bonding Ge / Si1–xGex / Si virtual substrates”, J. Electrochem. Soc. 151, G443 (2004).
[27] L.-J. Huang, J.-O. Chu, D. F. Canaperi, C. P. D’Emic, R. M. Anderson et al., “SiGe-on-insulator prepared by wafer bonding and layer transfer for high-performance field-effect”, Appl. Phys. Lett. 78, 1267 (2001)
[28] T. A. Langdo, M. T. Currie, A. Lochtefeld, R. Hammond, J. A. Carlin et al., “SiGe-free strained Si on insulator by wafer bonding and layer transfer”, Appl. Phys. Lett. 82, 4256 (2003).
[29] T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, Ph. D. Dessertation (1998).
[30] A. Uhlir, “Electrolytic shaping of germanium and silicon”, Bell System Tech. J. 35, 333 (1956).
[31] T. Yonehara, K. Sakaguchi, and N. Sato, “Epitaxial layer transfer by bond and etch back of porous Si”, Appl. Phys. Lett. 65, 2108 (1994).
[32] N. Sato, T. Yonehara, and H. Kumomi, U.S. Patent No. 5,290,712 (1994)
[33] T. Yonehara and K. Sakaguchi, “ELTRANR; Novel SOI Wafer Technology”, JSAP Int. No.4, (2001).
[34] K. Sakaguchi and T. Yonehara, U.S. Patent No. 6,121,112 (2000).
[35] C.-T. Sah, J. Y.-C. Sun, and J. J.-T. Tzou, “Deactivation of the boron acceptor in silicon by hydrogen”, Appl. Phys. Lett. 43, 204 (1983).
[36] J. D. Bernstein, S. Qin, C. Chen, and T.-J. King, “Hydrogenation of polycrystalline silicon thin film transistors byplasma ion implantation”, IEEE Elec. Dev. Lett. 16, 421 (1995).
[37] C. M. Park, J. H. Jeon, J.-S. Yoo, and M. K. Han,” A novel multi-channel poly-Si TFT improving hydrogen passivation”, Mat. Res. Soc. Symp. Proc. 471, 167 (1997).
[38] A. Matsuda and K. Tanaka,” Investigation of the growth kinetics of glow-discharge hydrogenated amorphous silicon using a radical separation technique”, J. Appl. Phys. 60, 2351 (1986).
[39] S. J. Pearton, J. W. Corbett, and M. Stavola, “Hydrogen in Crystalline Semiconductors”, Springer-Verlag, 202 (1991).
[40] V. Vieringen and N. Warmoltz, Physica 22, 849 (1956).
[41] B. L. Sopori, Y. Zhang, and N. M. Ravindra, “Silicon device processing in H ambients: H diffusion mechanisms and influence on electronic properties”, J. Electronic Mat. 30, 1616 (2001).
[42] B. L. Sopori, X. Deng, J. P. Benner, A. Rohatgi, P. Sana et al., “Hydrogen in silicon: A discussion of diffusion and passivation mechanisms”, Sol. Energy Mat. & Solar Cells 41/42, 159 (1996).
[43] Y. Zhang, “Modeling Hydrogen Diffusion for Solar Cell Passivation and Process Optimization”, New Jersey Institute of Technology, Ph. D. Dissertation (2002).
[44] B. L. Sopori, Y. Zhang, R. Reedy, K. Jones, N. M. Ravindra et al., “Trapping and detrapping of H in Si: Impact on diffusion properties and solar cell processing”, Mat. Res. Soc. Symp. Proc. 719, F.5.3.2 (2002).
[45] K.-H. Hwang, J.-W. Park, E.-J. Yoon, K.-W. Whang and J.-Y. Lee, “Amorphous {100} platelet formation in (100) Si induced by hydrogen plasma treatment”, J. Appl. Phys. 81, 74 (1997).
[46] D. Mathiot, “Modeling of hydrogen diffusion in n- and p-type silicon”, Phys. Rev. B 40, 5867 (1989).
[47] J. P. Kalejs and S. Rajendran, “Model for diffusion and trapping of hydrogen in crystalline silicon”, Appl. Phys. Lett. 55, 2763 (1989).
[48] J. T. Borenstein, J. W. Corbett, and S. J. Pearton, ”Kinetic model for hydrogen reaction in boron-doped silicon”, J. Appl. Phys. 73, 2751 (1993).
[49] C.-T. Sah, J. Y.-C. Sun, J. J.-T. Tzou, and S. C.-S. Pan, ”Deactivation of Group III acceptors in silicon during keV electron irradiation”, Appl. Phys. Lett. 43, 962 (1983).
[50] J. I. Pankove, D. E. Carlson, J. E. Berkeyheiser, and R. O. Wance, ” Neutralization of shallow acceptor levels in silicon by atomic hydrogen”, Phys. Rev. Lett. 51, 2224 (1983).
[51] J. I. Pankove, R. O. Wance, and J. E. Berkeyheiser, ” Neutralization of acceptors in Silicon by atomic hydrogen”, Appl. Phys. Lett. 45, 1100 (1984).
[52] A. J. Tavendale, D. Alexiev, and A. A. Williams, ” Field drift of the hydrogen-related, acceptor-neutralizing defect in diodes from hydrogenated silicon”, Appl. Phys. Lett. 47, 316 (1985).
[53] C. G. Van de Walle, Y. Bar-Yam, and S. T. Pantelides, ” Theory of hydrogen diffusion and reactions in crystalline silicon”, Phys. Rev. Lett. 60, 2761 (1988).
[54] S. T. Pantelides, ”Effect of hydrogen on shallow dopants in crystalline silicon”, Appl. Phys. Lett. 50, 995 (1987).
[55] J. I. Pankove, “Temperature dependence of boron neutralization in silicon by atomic hydrogen”, J. Appl. Phys. 68, 6532 (1990).
[56] A. D. Marwick, G. S. Oehrlein, and M. Wittmer, “High hydrogen concentrations produced by segregation into p+ layers in silicon”, Appl. Phys. Lett. 59, 198 (1991).
[57] C. P. Herrero and M. Stutzmann, “Microscopic structure of boron-hydrogen complexes in crystalline silicon”, Phys. Rev. B 38, 12668 (1988).
[58] L. Korpas, J. W. Corbett, and S. K. Estreicher, “Multiple trapping of hydrogen at boron and phosphorus in silicon”, Phys. Rev. B 46, 12365 (1992).
[59] J. C. Noya, C. P. Herrero, and R. Ramirez, “Microscopic structure and reorientation kinetics of B-H complexes in silicon”, Phys. Rev. B 56, 15139 (1997).
[60] N. M. Johnson, “Mechanism for hydrogen compensation of shallow-acceptor impurities in single-crystal silicon”, Phys. Rev. B 31, 5525 (1985).
[61] B. L. Sopori, Y. Zhang, and R. Reedy, “H diffusion for impurity and defect passivation: A physical model for solar cell processing”, Proc. 29th IEEE PVSC, 222 (2002).
[62] Y.-H. Xie, H. S. Luftman, J. Lopata, and J. C. Bean, “Hydrogenation of molecular beam epitaxial Ge0.36Si0.64 on Si”, Appl. Phys. Lett. 55, 684 (1989).
[63] T. Hochbauer, A. Misra, M. Nastasi, and J. W. Mayer, “Physical mechanisms behind the ion-cut in hydrogen implanted silicon”, J. Appl. Phys. 92, 2335 (2002).
[64] N. M. Johnson, F. A. Ponce, R. A. Street, and R. J. Nemanich, ”Defects in single-crystal silicon induced by hydrogenation”, Phy. Rev. B 35, 4166 (1987).
[65] Y.-S. Kim and K. J. Chang, ”Structural Transformation in the Formation of H-Induced (111) Platelets in Si”, Phys. Rev. Lett. 86, 1773 (2001).
[66] N. H. Nickel, G. B. Anderson, N. M. Johnson, and J.Walker, ”Nucleation of hydrogen-induced platelets in silicon”, Phys. Rev. B 62, 8012 (2000).
[67] H. J. Stein, S. M. Myers, and D. M. Follstaedt, “Infrared spectroscopy of chemically bonded hydrogen at voids and defects in silicon”, J. Appl. Phys. 73, 2755 (1993).
[68] L.-J. Huang, Q. Y. Tong, Y.-L. Chao, T.-H. Lee, T. Martini et al., “Onset of blistering in hydrogen-implanted silicon”, Appl. Phys. Lett., 74, 982 (1999).
[69] T. Hochbauer, “On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage”, Philipps-University of Marburg, Ph. D. Dissertation (2001).
[70] M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham et al., “On the mechanism of the hydrogen-induced exfoliation of silicon”, J. Vac. Sci. Technol. B 15, 1065 (1997).
[71] J. Grisolia, G. B. Assayag, A. Claverie, B. Aspar, C. Lagahe et al., “A transmission electron microscopy quantitative study of the growth kinetics of H platelets in Si”, Appl. Phys. Lett. 76, 852 (2000).
[72] B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie et al.,” The generic nature of the Smart-CutR process for thin film transfer”, J. Electronic Mat. 30, 834 (2001).
[73] M. Bruel, “Application of hydrogen ion beams to silicon on insulator material technology”, Nucl. Instr. and Methods B 108, 313 (1996).
[74] K. Mitani and U. Gosele, “Formation of interface bubbles in bonded silicon wafers: A thermodynamic model”, Appl. Phys. A 54, 543 (1992).
[75] L. B. Freund, ”A lower bound on implant density to induce wafer splitting in forming compliant substrate structures”, Appl. Phys. Lett. 70, 3519 (1997).
[76] L.-J. Huang, “Layer Transfer of Semiconductor and Insulator Materials by Wafer Bonding and Hydrogen Implantation”, Duke University, Ph. D. Dissertation (1999).
[77] A. Y. Usenko and A. G. Ulyashin, “Thinner silicon on insulator using plasma hydrogenation”, Jpn. J. Appl. Phys. 41, 5021 (2002).
[78] A. Y. Usenko, W. N. Carr, and B. Chen, “Transfer of single crystalline silicon nanolayer onto alien substrate”, IEEE Trans. Nanotechnol. 3, 225 (2004).
[79] P. Chen, P. K. Chu, T. Hochbauer, J.-K. Lee, M. Nastasi et al. ,“Investigation of plasma hydrogenation and trapping mechanism for layer transfer”, Appl. Phys. Lett. 86, 031904 (2005)
[80] P. Chen, S. S. Lau, P. K. Chu, K. Henttinen, T. Suni et al., “Silicon layer transfer using plasma hydrogenation”, Appl. Phys. Lett. 87, 111910 (2005).
[81] L. Shao, Y. Lin, J.-K. Lee, Q.-X. Jia, Y.-Q. Wang et al., “Plasma hydrogenation of strained Si/SiGe/Si heterostructure for layer transfer without ion implantation”, Appl. Phys. Lett. 87, 091902 (2005).
[82] L. Shao, Y. Lin, J. G. Swadener, J.-K. Lee, Q.-X. Jia et al., “Strain-facilitated process for the lift-off of a Si layer of less than 20 nm thickness”, Appl. Phys. Lett. 87, 251907 (2005).
[83] L. Shao, Y. Lin, J. G. Swadener, J.-K. Lee, Q.-X. Jia et al., “H-induced platelet and crack formation in hydrogenated epitaxial Si/Si0.98B0.02/Si structures”, Appl. Phys. Lett. 88, 021901 (2006).
[84] T.-H. Lee, WIPO Patent No. WO/2003/103026 (2003).
[85] B. Chen, “Mechanisms of Layer-transfer Related to Silicon-on-insulator Structures”, New Jersey Institute of Technology, Ph. D. Dissertation (2004).
[86] J. C. Vickerman, A. Brown, and N. M. Reed, “Secondary Ion Mass Spectrometry: Principles and Applications”, Oxford University Press, New York, (1989).
[87] A. J. Pitera and E. A. Fitzgerald, “Hydrogen gettering and strain-induced platelet nucleation in tensilely strained Si0.4Ge0.6/Ge for layer exfoliation applications”, J. Appl. Phys. 97, 104511 (2005).
[88] R. Hull, J. Gray, C. C. Wu, S. Atha, and J. A. Floro, “Interaction between surface morphology and misfit dislocations as strain relaxation modes in lattice-mismatched heteroepitaxy”, J. Phys.: Condens. Matter 14, 12829 (2002).
[89] M. Ohring, “Materials science of thin films: deposition and structure”, Academic Press, San Diego, CA, 436 (2002).
[90] R. M. Wallace, P. J. Chen, L. B. Archer, and J. M. Anthony, “Deuterium sintering of silicon-on-insulator structures: D diffusion and replacement reactions at the SiO2/Si interface”, J. Vac. Sci. Technol. B 17(5), 2153 (1999).
[91] L. Shao, J. K. Lee, Y. Q. Wang, M. Nastasi, P. E. Thompson et al., “Effect of substrate growth temperatures on H diffusion in hydrogenated Si/Si homoepitaxial structures grown by molecular beam epitaxy”, J. Appl. Phys. 99, 126105 (2006).
[92] L. Shao, X. Wang, I. Rusakova, H. Chen, J. Liu et al., “Study on interfacial dislocations of Si substrate/epitaxial layer by self-interstitial decoration technique”, Appl. Phys. Lett. 83, 934 (2003).
[93] H.-W. Kim and R. Reif, "Ex situ wafer surface cleaning by HF dipping for low temperature silicon epitaxy", Thin Solid Films 305, 280 (1997).
[94] H.-W. Kim, Z.-H. Zhou, and R. Reif, "Room temperature wafer surface cleaning by in-situ ECR (electron cyclotron resonance) hydrogen plasma for silicon homoepitaxial growth", Thin Solid Films 302(1-2), 169 (1997).
[95] D. M. Isaacson, A. J. Pitera, and E. A. Fitzgerald, “Relaxed graded SiGe donor substrates incorporating hydrogen-gettering and buried etch stop layers for strained silicon layer transfer applications”, J. Appl. Phys. 101, 013522 (2007).
[96] X. Hong, “Introduction to Semiconductor Manufacturing Technology”, Prentice Hall, 147 (2001).
[97] H. Bracht, “Diffusion mechanisms and intrinsic point-defect properties in silicon”, MRS Bull. 25, 22 (2000).
[98] L. D. Lanzerotti, J. C. Sturm, E. Stach, R. Hull, T. Buyuklimanli, and C. Magee, "Suppression of boron transient enhanced diffusion in SiGe heterojunction bipolar transistors by carbon incorporation", Appl. Phys. Lett. 70, 3125 (1997).
[99] P. J. H. Denteneer, C. G. Va der Walle, and S. T. Pantelides, “Microscopic structure of the hydrogen-boron complex in crystalline silicon”, Phys. Rev. B 39, 10809 (1989).
[100] T. Hochbauer, A. Misra, M. Nastasi, and J. W. Mayer, "Investigation of the cut location in hydrogen implantation induced silicon surface layer exfoliation", J. Appl. Phys. 89, 5980 (2001).
[101] C. Malleville, B. Aspar, T. Poumeyrol, H. Moriceau, M. Biuel et al., “Wafer bonding and H-implantation mechanisms involved in the Smart-cut technology”, Mater. Sci. Eng. B 16, 14 (1997).
[102] K. Henttinen, I. Suni, and S. S. Lau, “Mechanically induced Si layer transfer in hydrogen- implanted Si wafers”, Appl. Phys. Lett. 76, 2370 (2000).
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2007-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明