博碩士論文 943203065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.223.237.143
姓名 鄒仕豪(Shih-hao Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 間隙流體對於旋轉儀內顆粒偏析機制的影響
(The effect of liquid on particle segregation mechanism in rotating drum)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究是以類二維的精密旋轉儀為實驗設備,並以實驗的方式分別針對在不同的間隙流體含量以及不同的間隙流體黏度條件下,精密旋轉儀中顆粒的分離現象、安息角(angle of repose)角度,以及流動層厚度的研究探討。實驗結果顯示出當間隙流體含量逐漸增加的同時,安息角角度和流動層厚度也會隨之漸漸的變大,且當間隙流體的含量超過某一臨界值時,安息角角度及流動層厚度將不再改變,而趨近於一穩定值。而在分離現象方面,分離強度會隨著間隙流體含量的增大而漸漸變小,且當間隙流體的含量超過某一臨界值時,分離強度將也會趨近於一穩定值。而當我們固定間隙流體含量然後改變間隙流體的黏度時,安息角角度和流動層厚度也會隨著黏度的增加而變大,但分離強度會隨著間隙流體黏度的增加而減弱。實驗也可以得知,不管增加間隙流體的含量或是增加間隙流體的黏度,粒子的流動速度都會隨之而變慢。
摘要(英) A quasi-2D rotating drum was used to investigate segregation phenomena in this research. The effects of content and viscosity of added liquid on segregation index, angle of repose, and the flowing thickness in the rotating drum were experimental discussed in the paper.
The angle of repose and flowing thickness in the rotating drum increased with increasingly added liquid content. As the added liquid content was lager than the critical amount, the angle of repose and flowing thickness would reach a stable value.
The segregation index of mixture in the rotating drum decreased with the increase of added liquid content and that would reach a stable value as the added liquid content larger than the critical amount.
With changing the viscosity of liquid at the same liquid content, the angle of repose and flowing thickness increased but the segregation index decreased.
The velocities of particle motion in the rotating drum would be slower due to the increasingly content and viscosity of the added liquid.
關鍵字(中) ★ 液體含量
★ 液體黏度
★ 分離
★ 安息角
★ 流動層
關鍵字(英) ★ flowing zone
★ angle of repose
★ liquid content
★ liquid viscosity
★ segregation
論文目次 摘要 i
Abstract ii
目錄 iii
附圖目錄 v
附表目錄 ix
符號說明 x
一、 簡介 1
1-1 粒子流簡介 1
1-2 顆粒體在精密旋轉儀中的現象 3
1-2-1 液體對顆粒體運動現象的影響 7
1-3 顆粒體間的液橋現象 10
1-3-1 液橋力 11
1-3-2 毛細力 12
1-3-3 黏滯力 13
1-4 旋轉儀中的運動型態 14
1-5 旋轉儀中滾動型態(rolling)下的兩個區域 16
1-6 研究動機 17
1-7 研究方向與架構 18
二、 實驗方法 19
2-1 實驗設備 19
2-2 實驗原理與方法 23
2-2-1 實驗參數原理 23
2-2-2 影像處理分析方法 25
2-2-3 分離指標(segregation index) 26
2-3 實驗步驟 26
2-4 誤差分析 28
三、 結果與討論 30
3-1 間隙流體對分離之影響 30
3-1-1 分離強度隨時間變化之關係 30
3-1-2 間隙流體對分離強度之分析 33
3-1-3 濃度隨徑向距離變化之關係 35
3-2 間隙流體對顆粒體流動性質之影響 37
3-2-1 安息角角度與間隙流體及分離強度之分析 37
3-2-2 流動層厚度和間隙流體之關係 39
3-2-3 自由表面速度場分析 40
四、 結論 42
參考文獻 44
參考文獻 1.Shamlon, P. A., Handling of Bulk Solids, Butterworth, London, 1988.
2.賈魯強和黎璧賢,「漫談顆粒體物理」,物理雙月刊,二十三卷第四期,503-510頁,2001。
3.Campbell, C. S., “Rapid granular flows,” Annu. Rev. Fluid Mech., Vol. 22, pp. 57-92, 1990.
4.Liu, X. Y., Specht, E., Mellmann, J., “Experimental study of the lower and upper angles of repose of granular materials in rotating drums,” Powder Technol., Vol. 154, pp. 125-131, 2005.
5.Pohlman, N. A., Severson, B. L., Ottino, J. M., and Lueptow, R. M., “Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation,” Phys. Rev. E., Vol. 73, pp. 031304: 1-9, 2006.
6.Felix, G.., Falk, V., and D’Ortona, U., “Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness,” Powder Technol., Vol. 128, pp. 314-319, 2002.
7.Dury, C. M. and Ristow, G. H., “Competition of mixing and segregation in rotating cylinders,” Phys. Fluid, Vol. 11, pp. 1387-1394, 1999.
8.Chakraborty, S., Nott, P. R., and Prakash, J. R., “Analysis of radial segregation of granular mixtures in a rotating drum,” Eur. Phys. J. E, Vol. 1, pp. 265-273, 2000.
9.Ristow, G. H., “Particle mass segregation in a two-dimensional rotating drum,” Europhys Lett., Vol. 28, pp. 97-101, 1994.
10.Jain, N., Ottino, J. M., and Lueptow, R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, Vol. 7, pp. 69-81, 2005.
11.Thomas, N., “Reverse and intermediate segregation of large beads in dry granular media,” Phys. Rev. E., Vol. 62, pp. 961-974, 2000.
12.Hill, K. M., Gioia, G., and Amaravadi, D., “Radial segregation patterns in rotating granular mixture: waviness selection,” Phys. Rev. Lett., Vol. 93, pp. 224301: 1-4, 2004.
13.Zuriguel, I., Gray, J. M. N. T., Peixinho, J., and Mullin, T., “Pattern selection by a granular wave in a rotating drum,” Phys. Rev. E, Vol. 73, pp. 061302: 1-4, 2006.
14.Kuo, H. P., Hsu, R. C., and Hsiao, Y. C., “Investigation of axial segregation in a rotating drum,” Powder Technol., Vol. 153, pp. 196-203, 2005.
15.Van Puyvelde, D. R., Young, B. R., Wilson, M. A., and Schmidt, S. J., “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technol., Vol. 106, pp. 183-191, 1999.
16.Eskin, D. and Kalman, H., “A numerical parametric study of size segregation in a rotating drum,” Chem. Eng. Process, Vol. 39, pp. 539-545, 2000.
17.Albert, R., Albert, I., Hombaker, D., Schiffer, P., and Barabasi, A. L., “Maximum angle of stability in wet and dry spherical granular media,” Phys. Rev. E, Vol. 56, pp. 6271-6274, 1997.
18.Rennie, P. R., Chen, X. D., Hargreaves, C., and Mackereth, A. R., “A study of the cohesion of dairy powders,” J. Food. Eng., Vol. 39, pp. 277-284, 1999.
19.Fraysse, N., Thome, H., and Petit, L., “Humidity effects on the stability of a sandpile,” Eur. Phys. J. B, Vol. 11, pp. 615-619, 1999.
20.Howell, D. W., Aronson, I. S., and Crabtree, G. W., “Dynamics of electrostatically driven granular media: Effects of humidity,” Phys. Rev. E., Vol. 63, 050301: 1-4, 2001.
21.Nase, S. T., Vargas, W. L., Abatan, A. A., and McCarthy, J. J., “Discrete characterization tools for cohesive granular material,” Powder Technol., Vol. 116, pp. 214-223, 2001.
22.Jain, K., Shi, D. L., and McCarthy, J. J., “Discrete characterization of cohesion in gas-solid flows,” Powder Technol., Vol. 146, pp. 160-167, 2002.
23.Samadani, A. and Kudrolli, A., “Angle of repose and segregation in cohesive granular matter,” Phys. Rev. E., Vol. 64, pp. 051301: 1-9, 2001.
24.Hsiau, S. S. and Yang, S. C., “Numerical simulation of self-diffusion and mixing in a vibrated granular bed with the cohesive effect on liquid bridges,” Chem. Eng. Sci., Vol. 58, pp. 339-351, 2003.
25.Li, H. M. and McCarthy, J. J., “Controlling cohesive particle mixing and segregation,” Phys. Rev. Lett., Vol. 90, pp. 18430: 1-4, 2003.
26.Kohonen, M. M., Geromichalos, D., Scheel, M., Schierb, C., and Herminghausb, S., “On capillary bridges in wet granular materials,” Physica A, Vol. 339, pp. 7-15, 2004.
27.Li, H. M. and McCarthy J. J., “Phase diagrams for cohesive particle mixing and segregation,” Phys. Rev. E, Vol.71, pp. 021305: 1-8, 2005.
28.Yang, S. C. and Hsiau, S. S., “The simulation of powders with liquid bridges in a 2D vibration bed,” Chem. Eng. Sci., Vol. 56, pp. 6837-6849, 2001.
29.Ennis, B. J., Tardos, G. I., and Pfeffer, R., “The influence of viscosity on the strength of an axially strained pendular liquid bridge,” Chem. Eng. Sci., Vol. 45, pp. 3071-3088, 1999.
30.Adams, M. J., Thornton, C., and Lian, G., “First International Particle Technology Forum,” Agglomerate Coalescence, Vol. 1, August 17-19, Denver, USA, pp. 220-224, 1994.
31.Mason, T. G., Levine, A. J., Ertas, D., and Halsey, T. C., “Critical angle of wet sandpiles,” Phys. Rev. E, Vol. 60, pp. R5044-R5047, 1999.
32.Fisher, R. A., “On the capillary forces in an ideal soil,” J. Agric. Sci., Vol. 16, pp. 492-505, 1926.
33.Lian, G., Thornton, C., and Adams, M. J., “Microscopic simulation of oblique collisions of ‘wet’ agglomerates,” in: R.P. Behringer, J. T. Jenkins (Eds.), Powders and Grains 97, Balkema, Rotterdam, pp. 223-226, 1997.
34.Lian, G., Thornton, C., and Adams, M. J., “Discrete particle simulation of agglomerate impact coalescence,” Chem. Eng. Sci., Vol. 53, pp. 3381-3391, 1998.
35.Mikami, T., Kamiya, H., and Horio, M., “Numerical simulation of cohesive powder behavior in a fluidized bed,” Chem. Eng. Sci., Vol. 53, pp. 1927-1940, 1998.
36.Lian, G., Thornton, C., and Adams, M. J., “A theoretical study of the liquid bridge forces between two rigid spherical bodies,” J. Colloid Interf. Sci., Vol. 161, pp. 138-147, 1993.
37.Adams, M. J. and Perchard, V., “The cohesive forces between partilces with interstitial liquid,” Inst. Chem. Engng Symp., Vol. 91, pp. 147-160, 1985.
38.Goldman, A.J., Cox, R. G., and Brenner, H., “Slow viscous motion of a sphere parallel to a plan wall I. Motion through a quiescent fluid,” Chem. Eng. Sci., Vol. 22, pp. 637-651, 1967.
39.Henein H, Brimacomble J. K., and Watkinson A. P., “Experimental study of transverse bed motion in rotary kilns,” Metall. Trans. B, Vol. 14, pp. 191-205, 1983.
40.Rajchenbach J, “Flow in powders: from discrete avalanches to continuous regime,” Phys. Rev. Lett., Vol. 65, pp. 2221-2224, 1990.
41.Mellmann, J., “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior,” Powder Technol., Vol 118, pp. 251-270, 2001.
42.Boateng, A. A. and Barr, B. V., “Modeling of particle mixing and segregation in the transverse plane of a rotary kiln,” Chem. Eng. Sci., Vol. 51, pp. 4167-4181, 1996.
43.Ingram, A., Seville, J. P. K., Parker, D. J., Fan, X., and Forster, R. G., “Axial and radial dispersion in rolling mode rotating drums,” Powder Technol., Vol. 158, pp. 76-91, 2005.
44.Boateng, A. A., “Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder,” Int. J. Multiphase flow, Vol. 24, pp. 499-521, 1998.
45.Orpe, A. V. and Khakhar, D. V., “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Phys. Rev. E, Vol. 64, pp. 031302 1-13, 2001.
46.Jain, N., Ottino, J. M., and Lueptow, R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, Vol.7, pp. 69-81, 2005.
47.McCarthy, J. J., “Micro-modeling of cohesive mixing processes,” Powder Technol., Vol. 138, pp. 63-67, 2003.
48.Li, H. M., McCarthy, J. J., “Cohesive particle mixing and segregation under shear,” Powder Technol., Vol. 164, pp. 58-64, 2005.
49.Danckwerts, P. V., “The definition and measurement of some characteristic of mixtures,” Appl. Sci. Res., Vol. 3, pp 279-296, 1952.
50.Van Puyvelde, D. R., Young, B. R., Wilson, M. A., and Schmidt, S. J., “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technol., Vol. 106, pp. 183-191, 1999.
51.Finnie, G.. J., Kruyt, N. P., Ye, M., Zeilstra, C., and Kuipers, J. A. M., “Longitudinal and transverse mixing in rotary kilns: A discrete element method approach,” Chem. Eng. Sci., Vol. 60, pp. 4083-4091, 2005.
52.Khakhar, D. V., McCarthy, J. J., and Ottino, J. M., “Radial segregation of granular mixtures in rotating cylinders,” Phys. Fluids, Vol. 9, pp. 3600-3614, 1997.
53.Pietsch, W., "Size enlargement by agglomeration," Salle, Sauerlander Eds, pp. 33-37, 1990.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2007-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明