博碩士論文 943204009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.204.202.44
姓名 許倚哲(I-Che Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 負電性奈米過濾膜之排鹽特性
(The study on the mechanisms of salts rejected for negative charge nanofiltration membranes)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 金奈米粒子親水化及與DNA一對一鍵結之探討★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜
★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用
★ 以三聚氰氯為單體的抗氯型奈米過濾膜★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討
★ 蛋白質特定方向固定化-以α-amylase為例★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究
★ 位向性固定化葡萄糖氧化酶之新方法★ Indolicidin 及其類似物與微脂粒交互作用之焓測 量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以界面聚合的方式製造出帶有陰電性的奈米過濾膜。先選用常見之高分子製膜材料PAN (polyacrylonitrile)與造孔劑PVP (polyvinylpyrrolidone),以濕式相轉換法製備微過濾膜作為薄膜支撐層。主要分離層選用兩種不同胺基水相溶液:乙二胺 (ethylenediamine、EDA)、二乙基三胺(diethylenetriamine、DETA)與有機相單體溶液1,3,5-均三氯甲苯 (1,3,5-benzenetricarbonyl trichloride、TMC),於支撐層上進行界面聚合反應製造出薄膜的選擇層。這兩種胺基單體將造成孔洞大小不同的兩種陰離子奈米過濾膜,製成後薄膜以不同分子量的PEG (poly(ethylene glycol))測試可知薄膜的MWCO,再經由計算可得知EDA薄膜孔洞大小約為0.43nm,而DETA薄膜孔洞大小約為0.66nm。膜表面的流線電位也証實EDA型薄膜與DETA型薄膜在進料溶液為pH6左右時,表面略帶有負電性。
在單一鹽類過濾測試方面,我們分別選用MgSO4、Na2SO4、MgCl2、NaCl四種鹽類分別對EDA型與DETA型薄膜進行過濾,兩種薄膜對於這四種鹽類截留率 (R)的排列順序皆為R(MgSO4)>R(Na2SO4)>R(MgCl2)>R(NaCl),顯示此兩種薄膜均屬於Peeters等人所敘述的第二類奈米過濾膜。
我們利用兩種混合鹽系統(MgSO4-MgCl2、MgSO4-Na2SO4)來探討不同孔洞尺寸薄膜對於混合鹽的過濾性質,改變的變數包括:鹽類混合比例、溶液離子強度。隨著混合鹽總離子強度的增加,我們會看到DETA型薄膜對於各離子截留率下降幅度較EDA型薄膜明顯。在MgSO4-MgCl2系統中,隨著進料的SO42-/Cl-的比例增加,EDA型薄膜對Cl 離子的截留率改變不大而DETA型薄膜對於Cl 離子的截留率都呈現明顯的下降; EDA型薄膜對Mg2+離子的截留率影響不大而DETA型薄膜對於Mg2+離子的截留率則上升。
對於MgSO4-Na2SO4系統而言,隨著進料的Mg2+/Na+的比例增加,由於Mg2+較強的電荷遮蔽,將使得counter-ion(Mg2+與Na+)較易通過而截留率降低,但因較大的counter-ion(Mg2+) 造成較嚴重的孔道縮減,在DETA型薄膜上發現Mg2+的截留率不降反略微上升。反之在孔洞小的EDA型薄膜上,Mg2+的截留率並沒有太大變化。
混合鹽系統的實驗使我們將Peeters等人所敘述的第二類奈米過濾膜又分為兩個子類,第IIa類如EDA型薄膜,其截留率以大小排斥為主,較不受鹽濃度或其他離子的存在而改變,第IIb類如DETA型薄膜,其截留率同時受大小排斥與靜電排斥的影響,較易受鹽濃度或其他離子的存在而改變。
摘要(英) In this study, we manufacture negative charge nanofiltration membranes by interfacial polymerization. At first, we use PAN (poly- acrylonitrile) and PVP (polyvinylpyrrolidone) to manufacture an ultra- filtration membrane as the support layer by wet processing phase inversion. Subsequently, we use two categories water phase solution containing amine group, ethylenediamine (EDA) and diethylenetriamine (DETA), and 1,3,5-benzenetricarbonyl trichloride(TMC) as organic phase solution to manufacture the selective layer of nanofiltration membranes by interfacial polymerization.
We proceed filtration of different molecular weight of PEG to know the pore size of two categories nanofiltration membranes. From filtration of PEGs, we get that the pore size is 0.43nm for EDA type membrane and 0.6574nm for DETA type membrane from calculating. We use streaming potential method to detect the charge of the membrane surface. we can find that EDA type and DETA type membranes which are operated at pH5~7 of solution are negative charge membranes. We also use SEM image to know the surface structure of EDA type and DETA type membranes.
For the filtration of single salt, we use MgSO4、Na2SO4、MgCl2、and NaCl to proceed filtration irrespectively for EDA type and DETA type membranes. We can find that EDA type and DETA type membranes showed the same salt rejection sequence:R(MgSO4)>R(Na2SO4)>R(MgCl2)>R(NaCl). And EDA type membrane for each salt has a higher rejection than DETA type membrane. DETA type membrane for each salt has a higher permeability than EDA type membrane.
We also discuss the performance of filtration of multi-salt solution from two multi-salts systems, MgSO4-MgCl2 system and MgSO4-Na2SO4 system. The variables are the mixing ratio of salts and the ionic strength of multi-salts solution. We can find that the rejection of each ion decreases with increasing the ionic strength of mixing salts solution for two multi-salts systems. The decrease of rejection for each ion from DETA type membrane is clearer than from EDA type membrane. In MgSO4-Na2SO4 multi-salts system, with increasing the ratio of SO42-/Cl- in feed solution, the rejection of chloride ion decreases clearly, the rejection of sulfate ion decreases slightly, and the rejection of magnesium ion increases clearly for EDA type and DETA type membranes.
In MgSO4-MgCl2 multi-salts system, the counter ions (Mg2+ and Na+) will pass through membranes more easily because of a stronger charge hindrance of magnesium ion with increasing the ratio of Mg2+/Na+ in feed solution. But the rejection of magnesium ion has an increase tendency because magnesium ion will make clear decrease on pore size for DETA type membrane, whereas the rejection of magnesium ion has no clear change on a small pore size of EDA type membrane.
In our multi-salts experiments, we can divide membrane which was the second type nanofiltration membrane advanced by Peeters and Mulder into two categories. The rejection of II-a type membrane as EDA type is controlled by size repulsion and isn’t changed easily by salt concentration or existence of other ions. The rejection of II-b type membrane as DETA type is controlled by size repulsion and charge repulsion and changed more easily by salt concentration or existence of other ions.
關鍵字(中) ★ 奈米過濾
★ 負電性
★ 排鹽
★ 薄膜
★ 界面聚合法
關鍵字(英) ★ interfacial polymerization
★ membrane
★ negative charge
★ nanofiltration
論文目次 中文摘要 ------------------------------------------------------------------------------I
英文摘要 ------------------------------------------------------------------------------III
誌謝 ------------------------------------------------------------------------------------VI
總目錄 ---------------------------------------------------------------------------------VII
圖目錄 ---------------------------------------------------------------------------------X
表目錄 ---------------------------------------------------------------------------------XI
第一章 緒論 -------------------------------------------------------------------------- 1
1-1薄膜種類 -------------------------------------------------------------------------- 1
1-2奈米過濾膜的應用 -------------------------------------------------------------- 3
1-3研究目的與動機 ----------------------------------------------------------------- 5
第二章 文獻回顧 -------------------------------------------------------------------- 8
2-1薄膜發展歷史 -------------------------------------------------------------------- 8
2-2 RO薄膜與NF薄膜發展歷史--------------------------------------------------- 10
2-3薄膜製備方法 -------------------------------------------------------------------- 14
2-4奈米過濾薄膜製備方法 -------------------------------------------------------- 16
2-4.1孔洞充填法 (Pore-filling method) -------------------------------------- 16
2-4.2高分子掺合法 (Polymer blending method) --------------------------- 19
2-4.3高分子共聚合法 (Copolymerization method) ------------------------ 21
2-4.4交聯法 (Cross-linking method) ----------------------------------------- 23
2-4.5界面聚合法 (Interfacial polymerization) ------------------------------ 24
2-5影響界面聚合法主要因素 ----------------------------------------------------- 28
2.5-1水相單體或有機相單體的選擇 ---------------------------------------- 28
2.5-2水相溶液或有機相溶液的濃度 ---------------------------------------- 30
2.5-3界面聚合反應時間 ------------------------------------------------------- 31
2-6奈米過濾膜之分離機制 -------------------------------------------------------- 33
第三章 實驗藥品、設備與方法 --------------------------------------------------- 42
3-1實驗藥品 -------------------------------------------------------------------------- 42
3-2實驗儀器 -------------------------------------------------------------------------- 44
3-3實驗流程 -------------------------------------------------------------------------- 46
3-3.1 Polyacrylonitrile(PAN)UF基材薄膜的製備 ------------------------- 46
3-3.2 Polyamide NF薄膜的製備 ---------------------------------------------- 48
3-4薄膜性質測試 -------------------------------------------------------------------- 50
3-4.1掃描式電子顯微鏡(Scanning Electronic microscopy) --------------- 50
3-4.2薄膜流線電位量測原理與系統 ---------------------------------------- 50
3-5薄膜過濾實驗 -------------------------------------------------------------------- 52
3-5.1中性分子溶液過濾實驗 ------------------------------------------------- 52
3-5.2單一鹽類分子溶液過濾實驗 ------------------------------------------- 53
3-5.3混合鹽類分子溶液過濾實驗 ------------------------------------------- 55
第四章 結果與討論 -----------------------------------------58
4-1界面聚合時間對薄膜過濾性質的影響 -----------------------59
4-2掃描式電子顯微鏡 ---------------------------------------62
4-3薄膜孔洞與孔隙度之量測 ---------------------------------66
4-4膜電性測量結果 -----------------------------------------72
4-5薄膜之單鹽溶液過濾性質----------------------------------75
4-5.1薄膜對不同種單鹽溶液的過濾性質 -----------------------76
4-5.1-A MgSO4之阻截機制 -----------------------------------79
4-5.1-B Na2SO4之阻截機制 ----------------------------------82
4-5.1-C MgCl2之阻截機制 -----------------------------------85
4-5.1-D NaCl之阻截機制 ------------------------------------88
4-5.2薄膜上下游壓力差對鹽類溶液過濾性質之影響 -------------------------------------91
4-5.3類溶液濃度對鹽類溶液過濾性質之影響 -------------------------------------------95
4-6薄膜之混合鹽溶液過濾性質 -------------------------------------------------------97
4-6.1 MgSO4-MgCl2混合鹽之過濾性質--------------------------------------------------98
4-6.1-A進料混合鹽之SO42-/Cl-比例對於Cl-離子截留率的影響 ---------------------------98
4-6.1-B進料混合鹽之SO42-/Cl-比例對於SO42-離子截留率的影響----99
4-6.1-C進料混合鹽之SO42-/Cl-比例對 Mg2+離子截留率的影響---100
4-6.1-D不同孔洞大小負電性薄膜對於混合鹽截留率的影響 ------------------------------102
4-6.1-E不同混合鹽之總離子強度對於混合鹽截留率的影響 ------------------------------103
4-6.2 MgSO4-Na2SO4混合鹽之過濾性質 -------------------107
4-6.2-A進料混合鹽之Mg2+/Na+比例對於SO42-離子截留率的影響--107
4-6.2-B 進料混合鹽之Mg2+/Na+比例對於Na+離子截留率的影響---108
4-6.2-C進料混合鹽之Mg2+/Na+比例對於Mg2+離子截留率的影響---109
4-6.2-D不同孔洞大小負電性薄膜對於混合鹽截留率的影響---110
4-6.2-E不同混合鹽之總離子強度對於混合鹽截留率的影響---110
第五章 結論 -----------------------------------------------114
第六章 參考文獻--------------------------------------------119
參考文獻 Afonso M.D., Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions, Separation and Purification Technology 22-23 (2001)529–541.
Baker R.W., membrane technology and applications, Menlo Park, California.(2000).
Bowen W.R., Polysulfone—sulfonated poly(ether ether) ketone blend membranes:systematic synthesis and characterization, J. Membrane Sci .181 (2001) 253–263.
Bowen W.R., Manufacture and characterisation of polyetherimide/ sulfonated poly(ether ether ketone) blend membranes, J. Membrane Sci .250 (2005) 1–10.
Bowen W.R.,Characterisation and prediction of separation performance of nanofiltration membranes, J. Membrane Sci112(1996)263~274.
Bian X.k., Preparation and characterization of NF composite membrane,, J. Membrane Sci 210 (2002) 3–11.
Collins K.D., Dynamic hydration numbers for biologically important ions, Biophysical Chemistry 99 (2002) 155~168.
Cadotte J.E., Lloyd D.R., Evaluation of composite Reverse Osmosis Membrane, in Materials Science of Synthetic Membranes,ACS Symposium Series no.269,ACS ,Washington, (1985).
Childs R.F., A new class polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity, J. Membrane Sci.108 (1995) 37-56.
Chen G.-H., Miao J., Gao C.J., A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS), Desalination 181 (2005) 173-183.
Childs R. F., Formation of Pore-Filled Ion-Exchange Membranes with In Situ Crosslinking:Poly(vinylbenzyl ammonium salt)-Filled Membranes, J Appl. Poly. Sci.: Part A: Polymer Chemistry, Vol. 39, 807–820 (2001).
Childs R.F., Mika A.M., Pandey A.K., Dickson J.M., Nanofiltration using pore-filled membranes: effect of polyelectrolyte composition on performance, Separation and Purification Technology 22-23 (2001) 507–517.
Choi S., Yun Z., Hong S., Ahn K., The effect of co-existing ions and surface characteristics of nanomembranes on the removal of nitrate and fluoride, Desalination 133 (2001) 53-64.
Cadotte J.E., Interfacially Synthesized Reverse Osmosis Membrane, U.S. Patent 4,277,344, July (1981).
Chen G., Huang R., Sun M., Gao C., A novel composite nano.ltration (NF) membrane prepared from graft copolymer of trimethylallyl ammonium chloride onto chitosan (GCTACC)/poly (acrylonitrile) (PAN) by epichlorohydrin cross-linking , Carbohydrate Research 341 (2006 )2777-2784.
Donnan F.G., J. Membrane Sci. 100 (1995) 45.
Dresner L., Some remarks on the integration of the extended Nernst-Planck equations in the hyperfiltration of multicomponent solutions, Desalination,10(1972)27~46.
Freger V., Arnot T.C., Howell J.A., Separation of concentrated organic/inorganic salt mixtures by nanofiltration, J. Membrane Sci. 178 (2000) 185–193.
Ghoul M., Ismail A., Pontalier P.Y., Mechanisms for the selective rejection of solutes in nanofiltration membranes, Separation and Purification Technology 12 (1997) 175-181.
Ishihara K., Modfication of polysulfone with phospholipid polymer for I mprovement of the blood compatibility. Part 1.Surface characterization, Biomaterials 20 (1999) 1545-1551.
Kim C.K., Novel composite membranes prepared from 2,2 bis[4-(2-hydroxy-3- methacryloyloxy propoxy) phenyl]propane , triethylene glycol dimethacrylate, and their mixtures for the reverse osmosis process, J. Membrane Sci. 243 (2004) 311–316.
Kurumada K.I., Structure generation in PTFE porous membranes inducesd byb the uniaxial and biaxial stretching operations, J. Membrane Sci. 149 (1998) 51~57.
Kim K.J. ,Chemical and electrical characterization of virgin and protein-fouled polycarbonate track-etched membranes by FTIR and streaming-potential measurements. J. Membrane Sci 134(1997) 199~208.
Kim J.H., Moon E.J., Kim C.K., Composite membranes prepared from poly(m-animostyrene-co-vinyl alcohol) copolymers for the reverse osmosis process, J. Membrane Sci 216 (2003) 107–120.
Kwak S.Y., Effects of Bisphenol Monomer Structure on the Surface Morphology and Reverse Osmosis (RO) Performance of Thin-Film- Composite Membranes Composed of Polyphenyl Esters, J. Polymer Sci. : Part B: Polymer Physics, Vol. 34,2201-2208 (1996).
Krieg H.M. , Modise S.J., Keizer K., Neomagus H.W.J.P., Salt rejection in nanofiltration for single and binary salt mixtures in view of sulphate removal, Desalination 171 (2004) 205-215.
Lee K.H., Kim J.H., Kim S.Y., Pervaporation separation of water from ethanol through polyimide composite membranes, Journal of Membrane Science 169 (2000) 81–93.
Leob S., Sourirajan S., Sea Water Demineralization by Means of an Osmotic Membrane, Advances in chemistry Series Number 38 (1963).
Mulder M., Basic Principles of membrane technology, Kluwer Academic Publishers, The Netherlands, (1996).
Muirhead A., Beardsley S., Aboundiwan, Performance of the 12,000m3/daySea Water Reverse Osmosis Desalination Plant at Jiddah, Saudi Arabia(Jan.1979-Jan-1981), Desalination 42, 115(1982).
Mohan D., Preparation and performance of cellulose acetate– polyurethane blend membranes and their applications – II, J. Membrane Sci. 169 (2000) 215–228
Musale D.A., Kumar A., Effects of surface crosslinking on sieving characteristics of chitosan : poly(acrylonitrile) composite nanofiltration membranes, Separation and Purification Technology 21 (2000) 27–38.
Neilsen D.W., Jonsson G., Bulk-phase criteria for negative ion rejection in nanofiltration of multicomponent salt solutions, Sep. Sci. Technol. 29 (1991) 1165~1182.
Peeters J.M.M., Mulder M.H.V., Boom J.P., Strathmann H., Retention measurements of nanofiltration membranes with electrolyte solutions, J. Membrane Sci. 148 (1998) 199-209.
Reid C.E., Breton E.J., Water and Ion Flow across Cellulosic Membranes, J Appl.Poly. Sci. 1, (1959) 133.
Roh I.J. Influence of rupture strength of interfacially polymerized thin-film structure on the performance of polyamide composite membranes, J. Membrane Sci.199 (2002) 63-74.
Santafé-Moros A., Gozálvez-Zafrilla J.M., Lora-García J., Nitrate removal from ternary ionic solutions by a tight nanofiltration membrane, Desalination 204 (2007) 63–71.
Shah V.J., Rao A.P., Joshi S.V., Trivedi J.J., Devmurari C.V., Structure–performance correlation of polyamide thin film composite membranes: effect of coating conditions on film formation, Journal of Membrane Science 211 (2003) 13–24.
Schaep J., Bruggen B.V.N., Vandecasteele C., Wilms D., Influence of ion size and charge in nanofiltration, Separation and Purification Technology 14 (1998) 155-162.
Song Y., Sun P., Laurence L. Henry, Sun B., Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process, Journal of Membrane Science 251 (2005) 67–79.
Sarrazin J., Rejection of mineral salts on a gamma alumina nanofiltration membrane application to environment process, J. Membrane Sci., 102 (1995)123~129.
Schogl R., membrane permeation in system far from equilibrium, Ber. Bunseng. Physik. Che. 70 (1966) 400~414.
Tsruru T., Wada S.I., Izumi S., Asaeda M., Silica-zirconia for nanofiltration , J. Membrane Sci 149 (1994) 127~135.
Tansel B., Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes, Separation and Purification Technology 51 (2006) 40–47.
Wei Q. , Wang D., Zhang S., Chen C., Preparation and characterization of sol–gel-derived unsupported Al2O3–SiO2composite membranes, Journal of Alloys and Compounds 325 (2001) 223–229.
Young T.H., Wang D.M., The effect of the second phase inversion on microstructures in phase inversion EVAL membranes, J. Membrane Sci.146 (1998) 169~178.
Yamaguchi T., Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell, J. Membrane Sci.214 (2003) 283–292.
Zhou J., Childs R. F. , Mika A. M. ,Pore-filled nanofiltration membranes based on poly(2-acrylamido-2- methylpropanesulfonic acid) gels, J. Membrane Sci. 254 (2005) 89–99.
Zhao J., Du R., Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfonepositively charged composite nanofiltration membrane, Journal of Membrane Science 239 (2004) 183–188.
指導教授 阮若屈(Ruoh-Chyu Ruaan) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明