博碩士論文 943204012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.118.137.243
姓名 陳航(Hang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 三維光子晶體的理論模擬
(Theoretical Simulation of 3-D Photonic Crystal)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在光子晶體的研究中,光子帶隙的位置和大小一直是關注的重點,多數研究
針對單一的晶體結構探討介電常數,晶格常數等對帶隙引起的變化,本研究則較
系統化的以長程有序(晶體結構),短程有序(本地幾何形體),物理性質(介電常數
比)三個觀點,探討如何作帶隙的優化。本研究定義一量:變異,作為最大化帶隙
時的準則: 降低此變異,則可得到較大的完全帶隙; 變異以不可約化布里淵區上
之高對稱性點作為數據來源,並以多重性加權計算得來; 本研究將反結構視為破
壞本地幾何形體之對稱性以獲得較大帶隙的光子晶體類型,並對反結構對帶隙的
影嚮加以討論; 介電常數比的提高使得帶隙變寬,但同時亦使得帶隙位置往較長
波長處移動,此一趨勢並不利於帶隙位置在可見光波長范圍的設定,因此需要一
個最適當的介電常數比,而非傳統認為的介電常比越高越好。
本研究模擬的工具是使用稱為MPB 的軟體,其計算方法是屬於平面波展開
法,另有其他分析工具如Perl, XCrySDen 等作為輔助之用,這些軟體均是自由軟
體。
摘要(英) Band gap structure is the most important information while studying
electromagnetic propagation in photonic crystals. A collection of free software is used
to set up an analysis tool system for simulation purpose. Because it is desired for
application and has been a technique challenged to fabricate a photonic crystal
possessing a complete photonic band gap operates at the optical wavelength regime,
we have studied a method to optimize the size and position of band gap from the
standpoint of long range order, short range order and material property. We have
shown in this thesis that, decreasing the variance of k points on the first Brillouin zone
by choosing an appropriate lattice type and adjusting the lattice parameters is required
to the formation of a larger complete photonic band gap, and for easy calculations we
defined the variance quantity when the coordinates of high symmetry points are
known; a local symmetry distorted along some specific directions always opens and
extends the gaps, and the effects of structure inversion are considered from this
viewpoint; dielectric contrast should have a optimum value to fulfill the requirements
of position and size of gap simultaneously rather than an as-high-as-possible value, to
prevent the wavelength shift of gap to a longer range.
關鍵字(中) ★ 晶格常數
★ 帶隙
★ 模擬
★ 光子晶體
關鍵字(英) ★ lattice type
★ simulation
★ band gap
★ band structure
★ photonic crystal
論文目次 Table of Contents
Table of Contents I
List of Tables VI
Chapter 1. Introduction 1
Chapter 2. Literature review 2
Chapter 3. Long range order 3
3.1 Lattice spacing and Brillouin zones 3
3.2 Variance of lattice spacing 10
3.3 Calculation examples 11
3.3.1 Body-centered tetragonal 11
3.3.2 Simple tetragonal 16
Chapter 4. Short range order 30
4.1 Distorted local symmetry 30
4.2 Inverse structure 37
Chapter 5. Material property: dielectric constant 43
Chapter 6. Set-up and manipulation of analysis tools 48
6.1 Set-up and configuration of operation platform 49
6.2 Manipulation of analysis tools 52
6.2.1 MPB 52
6.2.2 Vis5D 56
6.2.3 XCrySDen 57
6.2.4 Perl 57
Chapter 7. Conclusion 66
Literature Cited 67
參考文獻 Literature Cited
A. Kokalj, Comp. Mater. Sci. 28 (2003) 155
Code available from http://www.xcrysden.org/
Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Migues, H., Mondia, J. P., Ozin, G. A., Toader, O., and Driel, H. M. V., “Large-Scale Synthesis of a Silicon Photonic Crystals with a Complete Three-Dimensional Band Gap Near 1.5 Micrometers”, Nature 405 (2000) 437.
Braun, P. V. and Wiltzius, P., “Microporous Materials: Electrochemically Grown Photonic Crystals”, Nature 402 (1999) 603.
Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., and Turberfield, A. J., “Fabrication of Photonic Crystals for the Visible Spectrum by Holographic Lithography”, Nature 404 (2000) 53
Chutinan, A. and Noda, S., “Spiral Three-Dimensional Photonic-Band-Gap Structure”, Phys. Rev. B. 57 (1998) 57.
Henry, N. F. M., Lipson, H. and Wooster, W. A., “The Interpretation of X-Ray Diffraction Photographs”, D. Van Nostrand Company, Inc., New York, 1951.
Ho, K. M., Chan, C. T., and Souloulis, C. M., “Existence of a Photonic Gap in Periodic Dielectric Structure”, Phys. Rev. Lett. 65 (1990) 3152.
Holland, B. T., Blanford, C. F., and Stein, A., “The Synthesis of Macroporous Minerals with Highly Ordered Three-Dimensional Arrays of Spheroidal Voids”, Science 281 (1998) 538.
Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals (Princeton University Press, Princeton, NJ, 1995).
Busch, K. and John, S., “Photonic Band Gap Formation in Certain Self-organizing Systems”, Phys. Rev. E, 58 (1998) 3896.
Kelly, J. J., and Vos, W. L., “Electrochemical Assembly of Ordered macropores in Gold”, Adv. Mater. 12 (2000) 888.
Kulinowski, K. M., Jiang, P., Vaswani, H., and Colvin, V. L., “Porous Metals from Colloidal Templates”, Adv. Mater. 12 (2000) 833.
Lin, S. L., Chow, E., Hietala, V., Villeneuve, P. R., and Joannopoulos J. D., “Experimental Demonstration of Guiding and Bending of electromagnetic Waves in a Photonic Crystal”, Science 282 (1998) 274.
Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R., and Bur, J., “A Three-Dimensional Photonic Crystal Operating at Infrared Wavelengths”, Nature 394 (1998) 251.
Lin, Y., Herman, P. R. and Abolghasemi E. L., “Proposed Single-Exposure Holographic Fabrication of Microsphere-Type Photonic Crystal through Phase-Mask Techniques”, J. Appl. Phys. 97 (2005) 096102.
Maldovan, M., Carter, W., and Thomas, E. L., “Three-Dimensional Dielectric Network Structures with Large Photonic Band Gaps”, Appl. Phys. Lett. 83 (2003) 5172.
Meade, R. D., Rappe, A. M., Brommer, K. D., and Joannopoulos, J. D., “Design of Three-Dimensional Photonic Crystals at Submicron Lengthscales”, Phys. Rev. B, 48 (1993) 8434.
Migues, H., Meseguer, F., Lopez, C., Holgado, M., Andreasen, G., Mifsud, A., and Fornes, V., “Germanium FCC Structure from a Colloidal Crystal Template”, Langmuir 16 (2000) 4405.
Moroz, A., “Three-Dimensional Complete Photonic-Band-gap Structures in the Visible”, Phys. Rev. Lett. 83 (1999) 5274.
Noda, S., Tomoda, K., Yamamoto, N., and Chutinan, A., “Full Three-Dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths”, Science 289 (2000) 604.
Ozbay, E., Michel, E., Tuttle, G., Biswas, R., Sigalas, M., and Ho, K. M., “Micromachined Millimeter-Wave Photonic Band-Gap Crystals”, Appl. Phys. Lett. 64 (1994) 2059.
Satpathy, S., Zhang, Z., and Salehpour, M. R., “Theory of Photon Bands in Three-Dimensional Periodic Dielectric Structures”, Phys. Rev. Lett. 64 (1990) 1239-1242.
Sozuer, H. S. and Dowling, J. P., “Photonic Band Calculations for Woodpile Structures”, J. Mod. Opt., 41 (1994) 231.
Subramania, G., Constant, K., Biswas, R., Sigalas, M. M., and Ho, K. M., “Optical Photonic Crystals Fabricated from Colloidal Systems”, Appl. Phys. Lett. 74 (1999) 3933.
Subramanian, G., Manoharan, V. N., Thorne, J. D., and Pine, D. J., “Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials”, Adv. Mater. 11 (1999) 1261.
Thijssen, M. S., Sprik, R., Wijnhoven, J. E. G. J., Megens, M., Narayanan, T., Lagendijk, A., and Vos, W. L., “Inhibited Light Propagation and Broadband Reflection in Photonic Air-Sphere Crystals”, Phys. Rev. Lett. 83 (1999) 2730.
Toader, O., Berciu, M. and John, S., “Photonic Band Gaps Based on Tetragonal Lattices of Slanted Pores”, Phys. Rev. Lett. 90 (2003)
Toader, O., Berciu, M., and John, S., “Photonic Band Gap Architectures for Holographic Lithography”, Phys. Rev. Lett. 92 (2004) 043905.
Toader, O. and John, S., “Proposed Square Spiral Microfabrication Architecture for Large Three-Dimensional Photonic Band Gap Crystals”, Science 292 (2001) 1133.
Velev, O. D., Jede, T. A., Lobo, R. F., and Lenhoff, A. M., “Porous Silica via Colloidal Crystallization”, Nature (London) 389 (1997) 447.
Velev, O. D., Tessier, P. M., Lenhoff, A. M., and Kaler, E. W., “Materials: A Class of Porous Metallic Nanostructures”, Nature 401 (1999) 548.
Vlasov, Y. A., Yao, N., and Norris, D. J., “Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots”, Adv. Mater. 11 (1999) 165.
Vos, W. L, Sprik, R., Blaaderen, A. V., Imhof, A., Lagendijk A., and Wegdam, G. H., “Strong Effects of Photonic Band structures on the Diffraction of Colloidal Crystals”, Phys. Rev. B 53 (1996) 16231.
Wijnhoven, J. E. G. J. and Vos, W. L. “Preparation of Photonic Crystals made of air spheres in titania”, Science 281 (1998) 802.
Wijnhoven, J. E. G. J., Zevenhuizen, S. J. M., Hendriks, M. A., Vanmaekelbergh, D., Kelly, J. J., Vos, W. L., “Electrochemical Assembly of Ordered Macropores in Gold”, Adv. Mater. 12 (2000) 888.
Yablonovitch, E., Gmitter, T. J., and Leung, K. M., “Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms”, Phys. Rev. Lett. 67 (1991) 2295.
Yablonovitch, E., “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett. 58 (1987) 2059.
Zhang, Z., Keys, A. S., Chen, T., and Glotzer, S. C., “Self-Assembly of Patchy Particles into Diamond Structure through Molecular Mimicry”, Langmuir 21 (2005) 11548.
Zavieh, L. and Mayer, T. S. “Demonstration of a Three-Dimensional Simple-Cubic Infrared Photonic Crystal”, Appl. Phys. Lett. 75 (1999) 2533.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2006-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明