博碩士論文 943204016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.119.105.239
姓名 張瓊文(Chyong Wen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
(Mesocrystals, Nucleation and Crystal Growth of Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在藥物的市場上,大約50%的藥物都是消旋性混合物 (racemic mixture)。消旋性混合物的種類有三種: 外消旋聚集物、外消旋混合物或者擬消旋體(固體溶液)。市面上大部分(90-95%)的外消旋藥都是外消旋混合物。在這篇論文中,我們集中在伊普鹽二水化合物的外消旋混合物藥的結晶。在本研究中有三個部份。首先,利用初步的溶劑篩選建立一個有關伊普鹽二水化合物的外消旋混合物結晶的資料庫,有溶解度、同質異相、結晶度和晶貌。Hansen parameters被利用來預測活性藥物份在不同的溶劑中的溶解度。第二,添加硫酸十二酯鈉在伊普鹽二水化合物的外消旋混合物的結晶中可以誘發介晶質的聚集並且具有良好的排列方向和外在的晶面。奈米顆粒可以自我組裝成介晶質而增加伊普鹽二水化合物的外消旋混合物的溶解速率。並且,添加硫酸十二酯鈉添加物可以誘發不同的同質異相並改變左右旋的比例。第三,我們使用電導度計來執行原位監控整個介晶質結晶過程並且整合熱力學與動力學的資訊來建立基本的成核和成長的參數。最後,所有的實驗都進行在伊普鹽二水化合物的外消旋混合物的臨界微胞濃度之上。
摘要(英) In the pharmaceutical market, approximately 50% are racemics (mixture of enantiomers). Racemic species have three types: racemic conglomerate, racemic compound and pseudoracemate. Most of the racemic drugs are racemic compound (90-95%). In this thesis, we focused on the crystallization of the racemic compound of (R,S)-(±)-sodium ibuprofen dihydrate. It has three sections in this study. Firstly, a useful engineering data bank of solubility, polymorph, crystallinity and crystal habits of racemic (R,S)-(±)-sodium ibuprofen dihydrate was established by initial solvent screening. Hansen parameters were utilized to predict APIs’ solubility in different solvents. Secondly, the presence of sodium dodecyl sulfate (SDS) additive in the crystallization of racemic (R,S)-(±)-sodium ibuprofen dihydrate could induce the formation of aggregation of mesocrystals which has well-aligned orientation and external crystal faces. Nanoparticles by self-assembly to form mesocrystals can enhance dissolution rate of racemic (R,S)-(±)-sodium ibuprofen dihydrate. Beside, the presence of the additive can induce different polymorphs and chance chiral resolution. Thirdly, conductivity in situ to monitor the entire crystallization process of mesocrystals and to gather the mesocrystals kinetic (nucleation and crystal growth) and thermodynamic (Gibbs free energy) information. The fundamental nucleation and crystal growth parameters were then estimated. Finally, all of the experiments were preceded above Critical Micelle Concentration (CMC) of racemic (R,S)-(±)-sodium ibuprofen dihydrate.
關鍵字(中) ★ 硫酸十二酯鈉
★ 伊普鹽二水化合物
關鍵字(英) ★ mesocrystals
★ S)-(±)-Sodium Ibuprofen Dihydrate
★ solvent screening
★ Racemic (R
★ nucleation and crystal growth
論文目次 摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………… II
Acknowledgments…………………………………………………………...………... IV
Table of Contents………………………………………………………………………..V
List of Tables…………………………………………………………………………...IX
List of Figures………………………………………………………………………….XI
Chapter 1 Executive summary…………………………………………………………..1
1.1 Introduction………………………………………………………………….…1
1.2 Brief Induction of Racemic Compound of Drug……………………………….5
1.3 Conceptual Framework………………………………………………………...9
References………………………………………………………………………...13
Chapter 2 Instrumental Analysis………………………………………………………17
2.1 Introduction…………………………………………………………………...17
2.2 Thermal Analysis……………………………………………………………...21
2.2.1 Differential Scanning Calorimetry (DSC)……………………………21
2.2.2 Thermogravimetric analysis (TGA)………………………………….25
2.3 Spectrometry analysis ………………………………………………………..28
2.3.1 Powder X-ray Diffraction (PXRD)…………………………………..28
2.3.2 Fourier Transform Infrared (FTIR) Spectroscopy………….…………32
2.4 Microscopic methods ...………………………………………………………34
2.4.1 Optical Microscope (OM)…………………………………………...34
2.4.2 Scanning Electron Microscope (SEM)………………………………38
2.5 Electrical Conductance……………..………………………………...……….44
2.6 Conclusions…………………………………………………………...………47
References……………………………………...…………………………………48
Chapter 3 Solubility, Polymorphism, Crystallinity and Crystal Habits of Racemic
(R,S)-(±)-Sodium Ibuprofen Dihydrate by Initial Solvent Screening…...…..54
3.1 Introduction…………………………...………………………………………54
3.2 Experiment methods…………………….…………………………………….61
3.2.1 Materials……………………………………………………………..61
3.2.2 Solvent screening of racemic compound of R/S (±) sodium ibuprofen dihydrate…………………………………………………...………...66
3.2.3 Measurement Instrument……………………………….……………67
3.2.3.1 Differential scanning calorimetry (DSC)………………………67
3.2.3.2 Thermogravimetric analysis (TGA)…………………………....68
3.2.3.3 Powder X-ray diffraction (PXRD)……………………………..68
3.2.3.4 Fourier transform infrared spectroscopy (FT-IR)…………..….69
3.2.3.5 Optical Microscopy (OM)………………...……………………69
3.2.3.6 Low Vacuum Scanning Electron Microscopy (LV-SEM)……...70
3.3 Results and Discussion………………………….……………………………71
3.3.1 Solubility……………………………………………………..……...71
3.3.2 Polymorph………………….………………………………………..79
3.3.3 Crystallinity……………...…………………………………………..83
3.3.4 Crystal Habits………………………………………………………..85
3.3.5 Hansen parameter for racemic (R,S)-(±)-sodium ibuprofen dihydrate……………………………………………………………..90
3.4 Conclusions…………………………...………………………………………95
References………………………………………………………………………...97
Chapter 4 Mesocrystals Formation in the Presence of Sodium Dodecyl Sulfate (SDS)
Additive in supersaturated Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate
Aqueous Solution………………………………………………………..104
4.1 Introduction………………………………………………………………….104
4.2 Materials………………...…………………………………………………...109
4.2.1 Racemic (R,S)-(±)-sodium ibuprofen dihydrate……...…………….109
4.2.2 Sodium dodecyl sulfate (SDS)……………………….…………….110
4.2.3 Organic solvent……………………………………………………..110
4.3 Experimental Procedures…………………...………………………………..111
4.4 Instrumental Analysis………………………………………………………..113
4.4.1 Differential scanning calorimetry (DSC)…………………………..113
4.4.2 Powder X-ray diffraction (PXRD)…………………………………113
4.4.3 Low Vacuum Scanning Electron Microscopy (LV-SEM)………….114
4.4.4 Electrical Conductance………………………………………….….114
4.4.5 Dissolution test………………………………………………….….115
4.5 Results and Discussion………………………………………………………117
4.5.1 Differential scanning calorimetry (DSC) analysis………..………..117
4.5.2 SEM Photographs of Mesocrystals………………..……………….122
4.5.3 Prove of Mesocrystals…………...…………………………………126
4.5.3.1 SEM shown aggregate……………………..……………..…...126
4.5.3.2 PXRD analysis…………………………………………..……126
4.5.4 Solubility and dissolution rate……..……………………………….130
4.6 Conclusions………………………………………………………………….133
References……………………………………………………………………….134
Chapter 5 Effects of Sodium Dodecyl Sulfate (SDS) on Crystallization Kinetics of
Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate in Aqueous solution…...141
5.1 Introduction………………………………………………………………….141
5.2 Materials………………...…………………………………………………...144
5.2.1 Racemic (R,S)-(±)-sodium ibuprofen dihydrate……...…………….144
5.2.2 Sodium dodecyl sulfate (SDS)……………………….…………….145
5.2.3 Organic solvent…………………………………………………….145
5.3 Experimental Procedures…………………...………………………………..146
5.4 Instrumental Analysis………………………………………………………..148
5.4.1 Electrical Conductance………………………………….………….148
5.5 Results and Discussion………………………………………………………149
5.5.1 Nucleation Mechanism……………………………………….…….149
5.5.2 Crystal Growth Mechanism………………………………………..156
5.5.3 Critical Micelle Concentration (CMC)………………….…………165
5.6 Conclusions………………………………………………………………….168
Notation………………………………………………………………………….169
References…………………………………………………………….…………170
Chapter 6 Conclusions and Future Works…………………………………………….176
6.1 Initial Solvent Screening………………………………………...…………..176
6.2 Mesocrystals Formation in the Presence of Sodium Dodecyl Sulfate (SDS)
Additive in Supersaturated Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate
Aqueous Solution…………………………………………………...……….177
6.3 Effects of Sodium Dodecyl Sulfate (SDS) on Crystallization Kinetics of
Racemic (R,S)-(±)-Sodium Ibuprofen Dihydrate in Aqueous Solution……178
參考文獻 S. Kraljevic, P. J. Stambrook, and K. P.avelic, “Accelerating drug discovery,” EMBO., 5(9), 837-842 (2004)
Burrill & Company, analysis for Pharmaceutical Research and Manufacturers of America, 2006.
J. Wechsler, “Accelerating drug development,” Pharm. Technol., 31(3), 32-42 (2007)
M. S. Lipsky, MD, and K. Sbarp, “From idea to market: the drug approval process,” JABFP., 14(5), 362-367 (2001)
A. Mehta, “birth of a drug,” Mod. Drug Discovery., 7, 37-42 (2004)
J. Wechsler, “Manufacturers face new challenges battling global threats,” Pharm. Tech., 30(8), 24-32 (2005).
P. H. Karpinski, “Polymorphism of active pharmaceutical ingredients,” Chem. Eng. Technol., 29(2), 233-237 (2006)
J. Bernstein, R. J. Davey, and Jan-Olav Henck, “Concomitant polymorphs,” Angew.Chem. Int. Ed., 38(23), 3440-3461 (1999).
L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe, Jr., Y. Y. Chiu, and A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications,” Pharm. Res., 20(4), 531-536 (2003).
T. L. Threlfall, “Analysis of organic polymorphs a review,” Analyst., 120(10), 2435-2459 (1995).
A. W. Xu, Y. Ma, and H. Cölfen, “Biomimetic mineralization,” J. Mater. Chem., 17(5), 415-449 (2007)
Y. Ma, and H. Cölfen and M. Antonietti, “Morphosynthesis of alanine mesocrystals by PH control,” J. Phys. Chem. B., 110(22), 10822-10828 (2006)
S. Wohlrab, N. Pinna, M. Antonietti, and H. Cölfen, “polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructure” Chem. Eur. J., 11(10), 2903-2913 (2005)
H. Cölfen, and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled aligment,” Angew. Chem. Int. Ed., 44(35), 5576-5591 (2005)
M. Fricke, and V. Schädler, “Bioinspired materials for the chemical industry,” Macromol. Biosci., 7(2), 103-104 (2007)
Y. Oaki, and H. Imai, “Hierarchically organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: a model approach towards superbiomineral materials,” Adv. Funct. Mater., 15(9), 1407-1414 (2005)
H. Imai, and Y. Oaki, “Emergence of morphological chirality from twinned crystals,” Angew. Chem. Int. Ed., 43(11), 1363-1368 (2004)
L. A. Gower, and D. A. Tirrell, “Calcium carbonate films and helices grown in solutions of poly(aspartate),” J. Cryst. Growth., 191(1) 153-160 (1998)
A. Somogyi, F. Bochner, and D. Foster, “Inside the isomers: the tale of chiral switches,” Aust. Prescr., 27(2), 47-49 (2004)
G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic compound of species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003).
M. C. Gohel, “Overview on chirality and applications of stereo-selective dissolution testing in the formulation and development work,” Dissilution. Technologies., 10(3), 16-20 (2003)
I. Agranat, H. Caner, and Caldwell, “Putting chirality to work: the strategy of chiral switches,” Nat. Rev. Drug. Discov., 1(10), 753-768 (2002)
Z. J.Li, and D. J. W. Grant, “Relationship between physical properties and crystal structures of chiral drugs,” J. Pharm. Sci., 86(10), 1073-1078 (1997)
T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and enantiomers of ketoprofen: phase diagram, thermodynamic studies, skin permeability, and use of chiral permeation enhancers,” J. Pharm. Sci., 87(7), 833-840 (1998)
B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of s(-) sodium Ibuprofen,” United States Patent, NO. 5696165 (1997)
Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta. Crystallogr., Sect. C: Cryst. Struct. Commun., C61, m435-m438 (2005)
B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of s(-) sodium ibuprofen,” United States Patent, NO. 6242000 B1 (1997)
R. hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-integrated approach form high-throughput screening to crystallization optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003)
L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Applications of process analytical technology to crystallization processes,” Adv. Drug. Del. Rev., 56(3), 349-369 (2004).
A. W. Newman, and S. R. Byrn, “Solid-state analysis of the active pharmaceutical ingredient in drug products,” DDT., 8(19), 898-905 (2003)
L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” PSTT., 1(3), 118-127 (1998)
S. J. Byard, S. L. Jackson, A. Amail, M. Bauer, and D. C. Apperley, “Studies on the crystallinity of a pharmaceutical development drug substance,” J. Pharm. Sci., 94(6), 1321-1335 (2005)
T. L. Threlfall, “Analysis of organic polymorphs. A review,” Analyst., 120(10), 2435-2460 (1995)
D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochim. Acta., 248(2), 1-59 (1995)
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
S. Debnath, and R. Suryanarayanan, “Influence of processing-induced phase transformations on the dissolution of theophylline tablets,” AAPS PharmSciTech., 5(1), Article 8 (2004)
D. Gao, and H. Rytting, “Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients,” Int. J. Pharm., 151(2), 183-192 (1997)
Y. Ma, H. Cölfen, and M. Antonietti, “Morphosynthesis of alanine mesocrystals by pH control,” J. Phys. Chem. B., 110(22), 10822-10828 (2006)
A. W. Xu, Y. Ma, and H. Cölfen, “Biomimetic mineralization,” J. Mater. Chem., 17(5), 415-449 (2007)
A. Weissberger, and B. W. Rossiter, “Techniques of chemistry volume1 physical methods of chemistry part V determination of thermodynamic and surface properties”, John Wiley & Sons, Inc., USA, pp.436-438 (1971)
D. Giron, “Applications of thermal analysis and coupled techniques in pharmaceutical industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2002)
P. Mura, F.Maestrelli, M. Cirri, S. Furlanetto, and S. Pinzauti, “Differential scanning calorimetry as an analytical tool in the study of drug-cyclodextrin interactions,” J. Therm. Anal. Calorim., 73(2), 635-646 (2003)
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Principles of instrumental analysis”, fifth edition, Thomson Learnin, USA, pp. 801-808 (2001)
M. D. Ticehurst, R. A. Storey, and C. Watt, “Application of slurry bridging experiments at controlled water activities to predict the solid-state conversion between anhydrous and hydrated forms using theophylline as a model drug,” Int. J. Pharm., 151(2), 133-143 (1997)
C.Rodriguez, and D. E. Bugay, “Characterization of pharmaceutical solvates by combined thermogravimetric and infrared analysis,” J. Pharm. Sci., 86(2), 263-266 (1997)
S. A. Kustrin, V. W. T. Rades, D. Saville, and I. G. Tucker, “Powder diffractometric assay of two polymorphic forms of ranitidine hydrochloride,” Int. J. Pharm., 184(1), 107-114 (1999)
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo, “General principles of pharmaceutical solid polymorphism : a supramolecular perspective,” Adv. Drug Deliv Rev., 56(3), 241-274 (2004)
B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder, D. J. W. Grant, and E. J. Munson, “Comparison of solid-state 13C NMR spectroscopy and powder x-ray diffraction for analyzing mixtures of polymorphs of neotame,” Anal. Chem., 71(16), 3325-3331 (1999)
K. K. Mina, S. Lee, D. K. S. Bae, and M. Lee, “Residual stresses in the electrode of Pt/Ti for the thermal detector with thin-film structure,” IEEE., 2(2), 929-932 (2001)
D. W. J. Cruickshank, H. J. Juretschke, and N. Kato, “Essay review sublime and worldly crystals,” Annals of Science., 53(1), 85-88 (1996)
S. Thangadurai, S. Kumar, A. K. Srivastava, and Y. Anjaneyulu, “X-ray powder diffraction patterns for certain fluoroquinolone antibiotic drugs,” Acta. Pharm., 53(4), 295-303 (2003)
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to Spectroscopy: A Guide for students of Organic Chemistry, third edition,” Thomson Learning, Inc., USA, pp.45-68 (2001)
B. Hinterstoisser, and L. Salmén, “Two-dimensional step-scan FTIR : a tool to unravel the OH-valency-range of the spectrum of cellulose I,” Cell., 6(3), 251-263 (1999)
L. M. Oberoi, K. S. Alexander, and A. T. Riga, “Study of interaction between ibuprofen and nicotinamide using differential scanning calorimetry, spectroscopy and microscopy and formulation of a fast-acting and possibly better ibuprofen suspension for osteoarthritis patients,” J. Pharm. Sci., 94(1), 93-101 (2005)
V. M. Gun’Ko, S. V. Mikhalovskii, M. Melillo, E. F. Voronin, L. V. Nosach, and E. M. Pakhlov, “The effect of the nature and structure of adsorbents on interaction with ibuprofen,” Theor. Exp. Chem., 40(3), 137-143 (2004)
http://www.southwestschools.org/jsfaculty/Microscopes/compoundscope.html
Z. G. Li, R. L. Harlow, C. M. Foris, H. Li, P. Ma, R. D. Vickery, M. B. Maurin, and B. H. Toby, “New applications of electron diffraction in the pharmaceutical industry : polymorph determination by using a combination of electron diffraction and synchrotron x-ray powder diffraction techniques,” Microsc. Microanal., 8(2), 134-138 (2002)
P. Mura, M. T. Faucci, A. Manderioli, G. Bramanti, and L. Ceccarelli, “Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy,” J. Pharm. Biomed. Anal., 18(1-2), 151-163 (1998)
K. Gong, R. Viboonkiat, I. U. Rehman, G. Buckton, and J. A. Darr, “Formation and characterization of porous indomethacin-PVP coprecipitates prepared using solvent-free supercritical fluid processing,” J. Pharm. Sci., 94(12), 2583-2590 (2005)
S. L. Wang, Y. J. Fu, W. C. Zhang, X. Sun, and Z. S. Gao, “In-line bulk concentration measurement by method of conductivity in industrial KDP crystal growth form aqueous solution,” Cryst. Res. Technol., 35(9), 1027-1034 (2000).
http://www.humboldt.edu/~dp6/chem110/cond/cond.html
O. D. Linnikov, “spontaneous crystallization of potassium chloride from aqueous and aqueous-ethanol solutions & Part I: Kinetics and mechanism of the crystallization process,” Cryst. Res. Technol., 39(6), 516-528 (2004).
I. Kabdasli, S. A. Parsons, and O. Tünay, “Effect of major ions on induction time of struvite precipitation,” CCACAA., 79(2), 243-251 (2006).
L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Application of process analytical technology to crystallization processes,” Adv. Drug. Del. Rev., 56(3), 349-369 (2004)
J. Workman, Jr., D. J. Veltkamp, S. Doherty, B. B. Anderson, K. E. Creasy, M. Koch, J. F. Tatera, A. L. Robinson, L. Bond, L. W. Burgess, G. N. Bokerman, A. H. Uiiman, G. P. Darsey, F. Mozayeni, J. A. Bamberger, and M. S. Greenwood, “Process analytical chemistry,” Anal. Chem., 71(12), 121R-180R (1999)
N. Rasenack, and B. W. Müller, “Ibuprofen crystals with optimized properties,” Int. J. Pharm., 245(1-2), 9-24 (2002)
R. Mohan, H. Lorenz, and A. S. Myerson, “Solubility measurement using differential scanning calorimetry,” Ind. Eng. Chem. Res., 41(19), 4854-4862 (2002)
D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochim. Acta., 248(2), 1-59 (1995)
R. hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-integrated approach form high-throughput screening to crystallization optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003)
S. L. Morissette, ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. E. Michael, and C. R. Gardner, “High-throughput crystallization: polymorph, salt, co-crystals and solvates of pharmaceutical solids” Advanced Drug Delivery Reviews., 56(3), 275-300 (2004)
M. Mirmehrabi, and S. Rohani, “An approach to solvent screening for crystallization of polymorphic pharmaceuticals and fine chemicals,” J. Pharm. Sci., 94(7), 1560-1576 (2005)
M. W. Walter, “Structure-based design of agrochemicals,” Nat. Prod. Rep., 19(3), 278-291 (2002)
M. Gahleitner, C. Bachner, E. Ratajski, G. Rohaczek, and W. Neibl, “Effects of the catalyst system on the crystallization of polypropylene,” J. Appl. Polym. Sci., 73(12), 2507-2515 (1999)
W. Lin, and Y. Gowayed, “Effects of acid dyes on crystallization and mechanical properties of melt-reprocessed nylon 66,” J. Appl. Polym. Sci., 74(10), 2386-2396 (1999)
V Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I.Schnell, A.Rapp, H. W. Spiess, S. D. Hudson, and H. Duan, “Self-organization of supramolecular helical dendrimers into comlex electronic materials,” Nature., 419(6905), 384-387 (2002)
O. Vogl, “My life with polymer science,” J. Polym. Sci., Part A: Polym. Chem., 42(3), 795-818 (2004)
Y. Yi, D. Hatziavramidis, and A. S. Myerson, “Development of a small-scale automated solubility measurement apparatus,” Ind. Eng. Chem. Res., 44(15), 5427-5433 (2005)
T. Panalaks, and J. A. Campbell, “Preliminary solvent extraction for the spectrophotometric determination of panthenol in pharmaceutical products,” Anal. Chem., 33(8), 1038-1040 (1961)
P. H. Karpinski, “Polymorphism of active pharmaceutical ingredients,” Chem. Eng. Technol., 29(2), 233-237 (2006)
J. Bernstein, R. J. Davey, and Jan-Olav Henck, “Concomitant polymorphs,” Angew.Chem. Int. Ed., 38(23), 3440-3461 (1999).
B. Bechtloff, S. Nordhoff, and F. Ulrich, “Pseudopolymorphs in industrial use,” Cryst. Res. Technol., 36(12), 1315-1328 (2001)
D. Gao, and H. Rytting, “Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients,” Int. J. Pharm., 151(2), 183-192 (1997)
S. Debnath, and R. Suryanarayanan, “Influence of processing-induced phase transformations on the dissolution of theophylline tablets,” AAPS PharmSciTech., 5(1) Article8 (2004)
N. Rasenack, and B. W. Muller, “Properties of ibuprofen crystallized under various conditions: a comparative study,” Drug Dev. Ind. Pharm., 28(9), 1077-1089 (2002)
D. Winn, and M. F. Doherty, “Modeling crystal shapes of organic materials grown from solution,” AIChE Journal., 46(7), 1348-1367 (2000)
H. Cano, N. Gabas, and J. P. Canselier, “Experimental study on the ibuprofen crystal growth morphology in solution,” J. Cryst. Growth., 224(3-4), 335-341 (2001)
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
M. Lahav, and L. Leiserowitz, “The effect of solvent on crystal growth and morphology,” Chem. Eng. Sci., 56(7), 2245-2253 (2001)
A. R. Sheth, and D. J.W Grant, “Relationship between the structure and properties of pharmaceutical crystals,” KONA. (23), 36-48 (2005)
G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic species of sodium ibuprofen: characterization and polymorphic relationship,” J. Pharm. Sci., 92(7), 1356-1366 (2003)
D. Giron, “Characterisation of salts of drug substances,” J. Therm. Anal. Calorim., 73(2), 441-457 (2003)
Y. Mastai, M. Sedlák, H. Cölfen, and M. Antonietti, “The Separation of Racemic Crystals into Enantiomers by Chiral Block Copolymers,” Chem. Eur. J., 8(11) 2429-2437 (2002)
B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of s(-) sodium Ibuprofen,” United States Patent, NO. 5696165 (1997)
B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of s(-) sodium ibuprofen,” United States Patent, NO. 6242000 B1 (1997)
H. Zhu, B. E. Padden, E. J. Munson, and D. J. W. Grant, “Physicochemical characterization of nedocromil bivalent metal salt hydrate. 2. nedocromil zinc,” J. Pharm. Sci., 86(4), 418-429 (1997)
J. F. Remenar, J. M. Macphee, B. K. Larson, V. A. Tyagi, J. H. Ho, D. A. Mcllroy, M. B. Hickey, P. B. Shaw, and ö. Almarsson, “Salt selection and simultaneous polymorphism assessment via high-throughput crystallization: the case of sertraline,” Org. Process Res. Dev., 7(6), 990-996 (2003)
R. J. Bastin, M. J. Bowker, and B. J. Slater, “Salt selection and optimisation procedures for pharmaceutical new chemical entities,” Org. Process Res. Dev., 4(5), 427-435 (2000)
M. Charoenchaitrakool, F. Dehghani, and N. R. Foster, “Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals,” Ind. Eng. Chem. Res., 39(12), 4794-4802 (2000)
K. A. Levis, M. E. Lane, and O. I. Corrigan, “Effect of buffer media composition on the solubility and effective permeability coefficient of ibuprofen,” Int. J. Pharm., 253(1-2), 49-59 (2003)
D. Singhal, and W. Curatolo, “Drug polymorphism and dosage form design: a practical perspective,” Advanced Drug Delivery Reviews., 56(3), 335-347 (2004)
Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta. Crystallogr., Sect. C: Cryst. Struct. Commun., C61, m435-m438 (2005)
P. Bustamante, M. A. Peña, and J. Barra, “The modified extended Hansen method to determine partial solubility parameters of drugs containing a single hydrogen bonding group and their sodium derivatives: benzoic acid/Na and ibuprofen/Na,” Int. J. Pharm., 194(1), 117-124 (2000)
J. Barra, M. A. Peña, and P. Bustamante, “Proposition of group molar constants for sodium to calculate the partial solubility parameters of sodium salts using the van Krevelen group contribution method,” Eur. J. Pharm Sci., 10(2), 153-161 (2000)
F. Gharagheizi, and M. T. Angaji, “A new improved method for estimating Hansen solubilty parameter of polymers,” J. Macromol. Sci., Phys., 45(2), 285-290 (2006)
F. Gharagheizi, M. Sattari, and M. T. Angaji, “Effect of calculation method on values of Hansen solubility parameter of polymers,” Polym. Bull., 57(3), 377-384 (2006)
P. Bustamante, M. A. Peña, and J. Barra, “Partial solubility parameters of piroxicam and niflumic acid,” Int. J. Pharm., 174(2), 141-150 (1998)
P. Kolář, J. W. Shen, A. Tsuboi, and T. Ishikawa, “Solvent selection for pharmaceuticals,” Fluid Phase Equilib, 194-197, 771-782 (2002)
G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. B. Brandl, “Thermodynamics of sublimation, crystal lattice energies, and crystal structure of racemates and enantiomers: (+)- and (±)-ibuprofen,” J. Pharm. Sci., 93(3), 654-665 (2004)
J. W. Mullin, “Crystallization 3th,” Butterworth Heinemann, London, p93 (1993)
B. G. Kyle, “Chemical and process thermodynamics 3th,” Person Education Taiwan Ltd., pp444-446 (2003)
M. Kitamura, “Controlling factor of polymorphism in crystallization processes,” J. Cryst. Growth., 237-239 Part3, 2205-2214 (2002)
S. Datta, and D. J. W. Grant, “Effect of supersaturation on the crystallization of phenylbutazone polymorphs,” Cryst. Res. Technol., 40(3), 233-242 (2005)
W. Beckmann, “Seeding the desired polymorph: background, possibilities, limitations, and case studies,” Org. Process Res. Dev., 4(5), 372-383 (2000)
L. R. Chen, and D. J. W. Grant, “Extension of clausius-clapeyron equation to predict hydrate stability at different temperatures,” Pharm Dev Technol., 3(4), 487-494 (1998)
W. F. Smith, “Principles of materials science and engineering,” McGraw-Hill, Inc. Taiwan, pp63-77(1986)
A. F. M. Barton, “Handbook of solubility parameters and other cohesion parameter”, second edition, CRC Press, USA, pp.69-149 (1991)
M. Fricke, and V. Schädler, “Bioinspired materials for the chemical industry,” Macromol. Biosci., 7(2), 103-104 (2007)
E. Jahnke, A. Millerioux, N. Severin, J. P. Rabe, and H. Frauenrath, “Functional, hierarchically structured poly(diacetylene)s via supramolecular self-assembly,” Macromol. Biosci., 7(2), 136-143 (2007)
F. Zeng, and S. C. Zimmerman, “Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly,” Chem. Rev., 97(5), 1681-1712 (1997)
A. W. Xu, Y. Ma and H. Cölfen, “Biomimetic mineralization,” J. Mater. Chem., 17(5), 415-449 (2007)
Y. Oaki, and H. Imai, “Hierarchically organized superstructure emerging from the exquisite association of inorganic crystals, organic polymers, and dyes: a model approach towards superbiomineral materials,” Adv. Funct. Mater., 15(9), 1407-1414 (2005)
Y. Ma, and H. Cölfen and M. Antonietti, “Morphosynthesis of alanine mesocrystals by pH control,” J. Phys. Chem. B., 110(22), 10822-10828 (2006)
S. Wohlrab, N. Pinna, M. Antonietti, and H. Cölfen, “polymer-induced alignment of DL-alanine nanocrystals to crystalline mesostructure” Chem. Eur. J., 11(10), 2903-2913 (2005)
H. Cölfen, and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled aligment,” Angew. Chem. Int. Ed., 44(35), 5576-5591 (2005)
S. Gracin, and A. C. Rasmuson, “Solubility of phenylacetic acid, p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid, and ibuprofen in pure solvents,” J. Chem. Eng. Data., 47(6) 1379-1383 (2002)
C. J. Price, “Take some solid steps to improve crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997)
R. Hilfiker, “Polymorphism in the pharmaceutical industry,” Wiley-vch, Weinheim, Germany, 2006: p289
S. L. Childs, L. J. Chyall, J. T. Dunlap, D. A. Coates, B. C. Stahly, and G. P. Stahly, “A metastable polymorph of metformin hydrochloride: isolation and characterization using capillary crystallization and thermal microscopy techniques,” Cryst. Growth Des., 4(3), 441-449 (2004)
C. K. Chen, and A. K. Singh, “A “bottom-up” approach to process development: application of physicochemical properties of reaction products toward the development of direct-drop processes,” Org. Process Res. Dev., 5(5), 508-513 (2001)
H. Cölfen, and S. Mann, “Higher-order organization by mesoscale self-assembly and tramsformation of hybrid nanostructure,” Angew. Chem. Int. Ed., 42(21), 2350-2365 (2003)
N. Jongen, P. Bowen, J. Lemaître, J. Valmalette, and H. Hofmann, “Precipitation of self-organized copper oxalate polycrystalline particles in the presence of hydroxypropylmethylcellulose (HPMC): control of morphology,” J. Colloid Interface Sci., 226(2), 189-198 (2000)
I. Katzhendler, R. Azoury, and M. Friedman, “Crystalline properties of carbamazepine in sustained release hydrophilic matrix tablets based on hydroxypropyl methylcellulose,” J. Controlled. Release., 54(1), 69-85 (1998)
T. Wang, H. Cölfen, and M. Antonietti, “Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive,” J. Am. Chem. Soc., 127(10), 3246-3247 (2005)
N. Kubota, “Effect of impurities on the growth kinetics of crystals,” Cryst. Res. Technol., 36(8-10), 749-769 (2001)
Z. Amjad, “Kinetics of crystal growth of calcium sulfate dihydrate. The influence of polymer composition, molecular weight, and solution pH,” Can. J. Chem., 66(6), 1529-1536 (1988)
A. P. Simonelli, S. C. Mehta, and I. Higuchi, “Inhibition of sulfathiazole crystal growth by polyvinylpyrrolidone,” J. Pharm. Sci., 59(5), 633-638 (1970)
Sodium Lauryl Sulfate “Handbook of pharmaceutical excipients 2nd,” Edited by A. Wade and P. J. Weller, American Pharmaceutical Association, Washington, pp448-450 (1994)
J. Workman, Jr., D. J. Veltkamp, S. Doherty, B. B. Anderson, K. E. Creasy, M. Koch, J. F. Tatera, A. L. Robinson, L. Bond, L. W. Burgess, G. N. Bokerman, A. H. Uiiman, G. P. Darsey, F. Mozayeni, J. A. Bamberger, and M. S. Greenwood, “Process analytical chemistry,” Anal. Chem., 71(12), 121R-180R (1999)
L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Application of process analytical technology to crystallization processes,” Adv. Drug. Del. Rev., 56(3), 349-369 (2004)
P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sullivan, and D. O’Grady, “A review of the use of process analytical technology for the understanding and optimization of production batch crystallization process,” Org. Process Res. Dev., 9(3), 348-355 (2005)
J. W. Mullin, “Crystallization 3rd,” Butterworth Heinemann, London, pp 117-118 (1993)
W. Sorasuchart, J. Wardrop, and J. W. Ayres, “Drug release from spray layered and coated drug-containing beads: effects of pH and comparison of different dissolution methods,” Drug Dev. Ind. Pharm., 25(10), 1093-1098 (1999).
S. A. Altaf, S. W. Hoag, and J. W. Ayres, “Bead Compacts. II. Evaluation of rapidly disintegrating nonsegregating compressed bead formulations,” Drug Dev.Ind. Pharm., 25(5), 635-642 (1999).
T. X. Viegas, R. U. Curatella, Lise L. Van Winkel, and G. Brinker, “Measurement
of intrinsic drug dissolution rates using two types of apparatus,” Pharm. Tech.,25(6), 44-53 (2001).
P. H. Karpinski, “Polymorphism of active pharmaceutical ingredients,” Chem. Eng. Technol., 29(2), 233-237 (2006)
J. Bernstein, R. J. Davey, and Jan-Olav Henck, “Concomitant polymorphs,” Angew.Chem. Int. Ed., 38(23), 3440-3461 (1999).
G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant, “Racemic species of sodium ibuprofen: characterization and polymorphic relationships,” J. Pharm. Sci., 92(7), 1356-1366 (2003)
S. Datta, and D. J. W. Grant, “Effect of supersaturation on the crystallization of phenylbutazone polymorphs,” Cryst. Res. Technol., 40(3), 233-242 (2005)
M. Kitamura, “Controlling factor of polymorphism in crystallization processes,” J. Cryst. Growth., 237-239 Part3, 2205-2214 (2002)
M. Kitamura, and T. Ishizu, “Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph,” J. Cryst. Growth., 192(1-2), 225-235 (1998)
W. Beckmann, “Seeding the desired polymorph: background, possibilities, limitations, and case studies,” Org. Process Res. Dev., 4(5), 372-383 (2000)
T. Threlfall, “Crystallization of polymorphs: thermodynamic insight into the role of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000)
L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, and M. Lahav, “Resolution of conglomerates with the assistance of tailor-made impurities. Generality and mechanistic aspects of the “rule of reversal”. A new method for assignment of absolute configuration,” J. Am. Chem. Soc., 104(17), 4610-4617(1982)
Y. Mastai, M. Sedlák, H. Cölfen, and M. Antonietti, “The separation of racemic crystals into enantiomers by chiral block copolymers,” Chem. Eur. J., 8(11), 2429-2437 (2002)
T. K. Anee, N. M. Sundaram, D. Arivuolic, P. Ramasamy, and S. N. Kalkura, “Influence of an organic and inorganic additive on the crystallization of dicalcium phosphate dihydrate,” J. Cryst. Growth., 285(3), 380-387 (2005)
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
A. L. D. Vries, and T. J. Price, “Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes,” Phil. Trans. R. Soc. Lond. B., 304(1121), 575-588 (1984)
K. K. Mina, S. Lee, D. K. S. Bae, and M. Lee, “Residual stresses in the electrode of Pt/Ti for the thermal detector with thin-film structure,” IEEE., 2(2), 929-932 (2001)
Edited by M. J. Habib, “Pharmaceutical solid dispersion technology,” Technomic Publishing Company, Inc., Pennsylvania, USA, P11 (2001
A. W. Xu, Y. Ma, and H. Cölfen, “Biomimetic mineralization,” J. Mater. Chem., 17(5), 415-449 (2007)
H. E. Shall, M. M. Rashad, and E. A. Abdel-A, “Effect of phosphonate additive on crystallization of gypsum in phosphoric and sulfuric acid medium,” Cryst. Res. Technol., 37(12), 1264-1273 (2002)
E. A. Abdel-A, M. M. Rashad, and H. E. Shall, “Crystallization of calcium sulfate dihydrate at different supersaturation ratios and differet free sulfate concentrations,” Cryst. Res. Technol., 39(4), 313-321 (2004)
B. K. Paul, and M. S. Joshi, “The effect of supersaturation on the induction period of potassium dihydrogen phosphate crystals grown from aqueous solution,” J. Phys. D: Appl. Phys., 9(8) 1253-1256 (1976)
H. E. Shall, M. M. Rashad, and E. A. Abdel-A, “Effect of phosphonate additive on crystallization of gypsum in phosphoric and sulfuric acid medium,” Cryst. Res. Technol., 37(12), 1264-1273 (2002)
C. J. Price, “Take some solid steps to improve crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997)
A. S. Myerson, “Handbook of industrial crystallization,” Butterworth Heinemann, Brooklyn, New York, p 52 (1993)
I. Kabdasli, S. A. Parsons, and O.Tünay, “Effect of major ions on induction time of struvite precipitation,” Croat. Chem. Acta., 79(2), 243-251 (2006)
A. Lancia, D. Musmarra, and M. Prisciandaro, “Measuring induction period for calcium sulfate dihydrate precipitation,” AIChE Journal., 45(2), 390-397 (1999)
W. Beckmann, “Seeding the desired polymorph: background, possibilities, limitations, and case studies,” Org. Process Res. Dev., 4(5), 372-383 (2000)
M. Kitamura, and T. Ishizu, “Kinetic effect of L-phenylalanine on growth process of L-glutamic acid polymorph,” J. Cryst. Growth., 192(1), 225-235 (1998)
S. Datta, and D. J. W. Grant, “Effect of supersaturation on the crystallization of phenylbutazone polymorphs,” Cryst. Res. Technol., 40(3), 233-242 (2005)
M. Kitamura, “Controlling factor of polymorphism in crystallization processes,” J. Cryst. Growth., 237-239 Part3, 2205-2214 (2002)
A. K. Tiwary, “Modification of crystal habit and its role in doage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
M. M. Rashad, M. H. H. Mahmound, I. A. Ibrahim, and E. A. Abdel-Aal, “Effect of citric acid and 1,2-dihydroxybenzene 3,5-disulfonic acid on crystallization of calcium sulfate dihydrate under simulated condition of phosphoric acid production,” Cryst. Res. Technol., 40(8), 741-747 (2005)
K. Sangwal, and T. Pałczyńska, “On the supersaturation and impurity concentration dependence of segregation coefficient in crystals grow from solutions,”
J. Cryst. Growth., 212(3-4), 522-531 (2000).
M.Rauls, K. Bartosch, M. Kind, S. kuch, R. Lacmann, and A. Mersmann, “The influence of impurities on crystallization kinetic-a case study on ammonium sulfate,” J. Cryst. Growth., 213(1-2), 116-128 (2000)
N. Eidelman, R. Azoury, and S. Sarig, “Reversal of trends in impurity effects on crystallization parameters,” J. Cryst. Growth., 74(1), 1-9 (1986)
J. Workman, Jr., D. J. Veltkamp, S. Doherty, B. B. Anderson, K. E. Creasy, M. Koch, J. F. Tatera, A. L. Robinson, L. Bond, L. W. Burgess, G. N. Bokerman, A. H. Uiiman, G. P. Darsey, F. Mozayeni, J. A. Bamberger, and M. S. Greenwood, “Process analytical chemistry,” Anal. Chem., 71(12), 121R-180R (1999)
L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain, “Application of process analytical technology to crystallization processes,” Adv. Drug. Del. Rev., 56(3), 349-369 (2004)
P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sullivan, and D. O’Grady, “A review of the use of process analytical technology for the understanding and optimization of production batch crystallization process,” Org. Process Res. Dev., 9(3), 348-355 (2005)
A. Ridell, H. Evertsson, S. Nilsson, and L. O. Sundelöf, “Amphiphilic association of ibuprofen and two nonionic cellulose derivatives in aqueous solution,” J. Pharm. Sci., 88(11), 1175-1181 (1999)
J. Israelachvili, “Intermolecular and Surface Forces, 6th” Academic Press, New
York.(1997).
J. W. Mullin, “Crystallization 3rd,” Butterworth Heinemann, London, pp 117-118 (1993)
Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and enantiomeric ibuprofen sodium dihydrates,” Acta. Crystallogr., Sect. C: Cryst. Struct. Commun., C61, m435-m438 (2005)
H. Qu, M. L. Kultanen, and J. Kallas, “In-line image analysis on the effects of additives in batch cooling crystallization,” J. Cryst. Growth., 289(1), 286-294 (2006)
S. Boomadevi, R. Dhanasekaran, and P. Ramasamy, “Investigations on nucleation and growth kinetics of urea crystals from methanol,” Cryst. Res. Technol., 37(2-3), 159-168 (2002)
N. Dan, and M. Tirrell, “Self-assembly of block copolymers with a strongly charged and a hydrophobic block in a selective, polar solvent. Micelles and adsorbed layers,” Macromolecules., 26(16) 4310-4315 (1993)
T. Ono, H. J. Kramer, J. H. T. Horst, and P. J. Jansens, “Process modeling of the polymorphic transformation of L-glutamic acid,” Cryst. Growth Des., 4(6), 1161-1167 (2004)
C. P. M. Roelands, S. Jiang, M. Kitamura, J. H. T. Horst, H. J. M. Kramer, and P. J. Jansens, “Antisolvent crystallization of the polymorphs of L-histidine as a function of supersaturation ratio and of solvent composition,” Cryst. Growth Des., 6(4), 955-963 (2006)
R. A. Granberg, and Å. C. Rasmuson, “Crystal growth rates of paracetamol in mixtures of water + acetone + toluene,” AIChE., 51(9), 2441-2456 (2005)
H. E. L. Madsen, “Crystal growth kinetics of copper phosphate from acid solution at 37°C,” J. Cryst. Growth., 275(1), e191-e196 (2005)
C. H. Gu, K. Chatterjee, V. Y. Jr., and D. J. W. Grant, “Stabilization of a metastable polymorph of sulfamerazine by structurally related additive,” J. Cryst. Growth., 235(1-4), 471-481 (2002)
A. S. Myerson, “Handbook of industrial crystallization,” Butterworth Heinemann, Brooklyn, New York, p 52 (1993)
J. W. Mullin, “Crystallization 3rd,” Butterworth Heinemann, London, pp 209-217 (1993)
W. Wu, and G. H. Nancollas, “The relationship between surface free-energy and kinetics in the mineralization and demineralization of dental hard tissue,” Adv. Dent. Res., 11(4), 566-575 (1997)
W. Omar, and J. Ulrich, “Influence of crystallization conditions on the mechanism on the rate of crystal growth of potassium sulphate,” Cryst. Res. Technol., 38(1), 34-41 (2003)
X. Y. Liu, K. Maiwa, and K. Tsukamoto, “Heterogeneous two-dimensional nucleation and growth kinetics,” J. Chem. Phys., 106(5), 1870-1879 (1997)
A. S. Myerson, “Handbook of industrial crystallization,” Butterworth Heinemann, Brooklyn, New York, pp 54-55 (1993)
C. O. R. Yagui, A. P. Jr, and L. C. Tavares, “Micellar solubilization of drugs,” J. Pharm. Sci., 8(2), 147-163 (2005)
指導教授 李度(Tu Lee) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明