博碩士論文 943204036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.138.33.178
姓名 卓明君(Ming-Jyun Jwo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
(Concentration and recovery of carbon dioxide and hydrogen from hydrogen product stream of coal gasification process)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬
★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬
★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析
★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 粉煤(pulverized coal)鍋爐發電時所產生的粗煤氣(raw gas),在經過淨化與水煤氣轉化反應(water gas-shift reaction)的處理後,會成為以氮氣、二氧化碳、氫氣為主成分之合成氣體。其中氫氣可做為燃料電池的燃料;而二氧化碳則為造成溫室效應的主要溫室氣體。因此若能夠把兩者分離,將氫氣加以使用並把二氧化碳封裝儲存是兼顧能源與環保的理想目標。
變壓吸附程序是一種簡單、經濟且有效率的分離氣體程序,本研究將利用數值模擬的方法,發展出一套能夠有效分離含氫氣與二氧化碳合成氣的變壓吸附系統。模擬上將分成兩階段,利用不同的製程與吸附劑的搭配,處理組成為10%氮氣、50%二氧化碳、40%氫氣的合成氣體。
在驗證程式的適用性後,針對合成氣的組成與流量設計系統的操作參數,在裝置流程的設計上將分成兩階段來處理氣體。第一階段為H2-PSA製程,吸附劑使用5A沸石與活性碳,目摽為將合成氣的氫氣濃度提升至99%(回收率80%);第二階段為CO2-PSA製程,吸附劑使用13X沸石,目標為濃縮與回收來自第一階段塔底排氣的強吸附成分氣體,使二氧化碳濃度提升至90%(回收率80%)。本研究將探討各操作變數(如:進料壓力、吸附塔塔長、步驟時間等)對模擬結果的影響,尋求最佳分離的操作條件。以做為未來建立大規模工廠設備之參考。
摘要(英) The raw gas produced from boiler which generates electricity by burning pulverized coal, after passing through gas clean up system and water gas-shift reactor, becomes the syngas with main components nitrogen, carbon dioxide and hydrogen. Hydrogen can be used as a fuel of fuel cells. Carbon dioxide is the greenhouse gas which creates the greenhouse effect. For energy and environment consideration, it is important to separate these two components and to handle them separately.
Pressure swing adsorption (PSA) is a simple, economical and effective gas separating method. For purifying the hydrogen and carbon dioxide form syngas, this study plans to develop a PSA system by using numerical simulation method. The simulation includes two stages. We want to handle the syngas which contains 10% nitrogen, 50% carbon dioxide and 40% hydrogen by using several process and adsorbent.
After confirming the accuracy of the simulation program, we design the equipment and process for two-stage PSA system. The operating condition and scale of the device are based on the components of syngas and feed flowrate. For stages 1 H2-PSA process, we use zeolite 5A and activated carbon as the adsorbent in order to concentrate the purity of hydrogen to 99% (recovery 80%). Stage 2 is CO2-PSA process, which is used to concentrate carbon dioxide from stage 1, and utilizes zeolite 13X as the adsorbent in order to concentrate the carbon dioxide purity to 90% (recovery 80%). The optimal operating conditions is obtained by changing the operating variables, such as feed pressure, adsorber length and step time. The simulation results get basic information for the after-IGCC factory design in future project.
關鍵字(中) ★ 變壓吸附
★ 氫氣
★ 二氧化碳
關鍵字(英) ★ carbon dioxide
★ hydrogen
★ pressure swing adsorption
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章、緒論 1
第二章、簡介及文獻回顧 4
2-1 變壓吸附之簡介 4
2-1-1 變壓吸附基本原理 4
2-1-2 吸附劑及其選擇性 5
2-1-3 變壓吸附基本操作步驟 7
2-2 文獻回顧 9
2-2-1 PSA程序之發展及改進 9
2-2-2 理論之回顧 12
2-3 變壓吸附法濃縮氫氣與回收二氧化碳 14
第三章、理論 18
3-1 基本假設 18
3-2 統制方程式 19
3-3 吸附平衡關係式 22
3-4 參數推導 28
3-4-1 軸向分散係數 28
3-4-2 熱傳係數 30
3-5 求解的方法 32
3-5-1 閥公式 32
3-5-2 求解步驟 33
第四章、製程描述 35
4-1 雙塔四步驟變壓吸附製程 37
4-2 三塔六步驟變壓吸附製程 39
4-3 四塔八步驟變壓吸附製程 41
4-4 參數與操作條件 44
4-4-1 雙塔變壓吸附設備之參數與操作條件 44
4-3-2 兩階段分離合成氣程序之參數與操作條件 47
第五章、數據分析與結果討論 49
5-1 雙塔變壓吸附設備模擬結果與驗證 49
5-2 四塔八步驟H2-PSA程序之模擬 52
5-2-1 進料壓力對製程的影響 53
5-2-2 吸附塔塔長對製程的影響 60
5-2-3 壓力平衡時間對製程的影響 67
5-2-4 閒置時間對製程的影響 74
5-2-5 同向減壓時間對製程的影響 81
5-2-6 雙層吸附劑對製程的影響 88
5-3 雙塔四步驟CO2-PSA程序之模擬 98
5-3-1 進料壓力對製程的影響 98
5-3-2 吸附塔塔長對製程的影響 105
5-3-3 進料加壓時間對製程的影響 110
5-3-4 高壓排氣時間對製程的影響 116
5-4 三塔六步驟CO2-PSA程序之模擬 122
5-4-1 進料壓力對製程的影響 122
5-4-2 吸附塔塔長對製程的影響 128
5-4-3 進料加壓時間對製程的影響 133
5-4-4 高壓排氣時間對製程的影響 139
第六章、結論 145
符號說明 147
參考文獻 150
附錄A、流速之估算方法 155
附錄B、各數據點詳細資料 159
參考文獻 [1] Berlin, N.H., ”Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966.
[2] Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960.
[3] Chen, Y.D., J.A. Ritter, and R.T. Yang, “Nonideal Adsorption from Multicomponent Gas Mixtures at Elevated Pressures on a 5A Molecular Sieve”, Chem. Eng. Sci., 45(9), 2877-2894, 1990.
[4] Chou, C.T., and W.C. Huang, “Incorporation of a Valve Equation into the Simulation of a Pressure Swing Adsorption Process”, Chem. Eng. Sci., 49(1), 75-84, 1994.
[5] Chue, K.T., J.N. Yoo, S.H. Cho, and R.T. Yang, “Comparison of Activated Carbon and Zeolite 13X for CO2 Recovery from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 34(2), 591-598, 1995.
[6] Diagne, D., M. Goto, and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes: Application to Carbon Dioxide Removal and Enrichment”, J. Chem. Eng. Jpn., 27(1), 85-89, 1994.
[7] Diagne D., M. Goto and T. Hirose, “Numerical Analysis of a Dual Refluxed PSA Process During Simultaneous Removal and Concentration of Carbon Dioxide Dilute Gas from Air”, J. Chem. Technol. Biotechnol., 65(1), 29-38, 1996.
[8] Doong, S.J., and R.T. Yang, “Hydrogen Purification by The Multi-Bed Pressure Swing Adsorption Process”, React. Polym., 6(1), 7-13, 1985.
[9] Doong, S.J., and R.T. Yang, "Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models", AIChE J., 32(3), 397-410, 1986.
[10] Doong, S.J., and R.T. Yang, "Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption", AIChE J., 33(6), 1045-1049, 1987.
[11] Farooq, S. and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem.Eng. Sci., 45(1), 107-115, 1990.
[12] Fuller, E.N., P.D. Schettler, and J.C. Giddings, ”A Comparison of Methods for Predicting Gaseous Diffusion Coefficients“, J. Gas Chromatogr., 3, 222-227, 1965.
[13] Fuller, E.N., P.D. Schettler, and J.C. Giddings, ”A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem., 58(5), 18-27, 1966.
[14] Hassan, M.M., D.M. Ruthven, and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., 41(5), 1333-1343, 1986.
[15] Hassan, M.M., N.S. Raghvan, and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem.Eng. Sci., 42(8), 2037-2043, 1987.
[16] Heinze, G., Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
[17] Jee, J.G., M.B. Kim, and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixturess”, Ind. Eng. Chem. Res., 40(3), 868-878, 2001.
[18] Jones, R.L., G.E. Keller II and R.C. Wells, ”Rapid Pressure Swing Adsorption Process with High Enrichment Factor”, U.S. Patent 4,194,892,assigend to Union Carbide Corporation,1980.
[19] Kikkinides, E.S., R.T. Yang, and S.H. Cho, “Concentration and Recovery of Crbon Dioxide from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res., 32(11), 2714-2720, 1993.
[20] Kim, J.N., K.T. Chue, K.I. Kim, S.H. Cho, and J.D. Kim, “Non-Isothermal Adsorpiton of Nitrogen-Carbon Dioxide Mixture in a Fixed Bed of Zeolite-X”, J. Chem. Eng. Jpn., 27(1), 45-51, 1994.
[21] Knaebel, S. P., D. Ko and L. T. Biegler,”Simulation and Optimization of a Pressure Swing Adsorption System: Recovering Hydrigen from methane”, Asorption, 11(1), 615-620, 2005.
[22] Ko, D., R. Siriwardane and L. T. Biegler, “Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration”, Ind. Eng. Chem. Res., 42(2), 339-348, 2003.
[23] Kowler, D.E., and R.H. Kadlec, “The Optimal Control Of a Periodic Adsorber: Part I. Experiment”, AIChE J., 31(6), 1207-1212, 1972.
[24] Lee, C. H., J. Yang, and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., 45(3), 535-545, 1999.
[25] Marsh, W.D., F.S. Pramuk, R.C. Hoke,, and C.W. Skarstrom, “Pressure Equalization Depressuring in Heatless Adsorption”,U.S. Patent 3,142,547, assigned to Esso Research and Engineering Company, 1964.
[26] McCabe, W.L., J.C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001.
[27] Montgareuil, P. Guerin De, and D. Domine, “Process for separating a binary gaseous mixture by adsorption”, U.S. Patent 3,155,468, assigned to Societe L`Air Liquide, Paris, 1964
[28] Na, B. K., H. Lee, K. K. Koo and H. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Gas Using Activated Carbon”, Ind. Eng. Chem. Res., 41(22), 5498-5503, 2002.
[29] Nakao, S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Jpn., 16(2), 114-119, 1983.
[30] Nam, G..M. ; B.M. Jeong, S.H. Kang, B.K. Lee, D.K. Choi, “Equilibrium isotherms of CH4, C2H6, C2H4, N2 and H2 on zeolite 5A”, J. Chem. Eng. Data , 50(1), 72-76, 2005.
[31] Park, J.H., J.N. Kim, S.H. Cho, J.D. Kim, and R.T. Yang, “Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption”, Chem. Eng. Sci., 53(23), 3951-3963, 1998.
[32] Park, J. H., H. T. Beum, J. N. Kim and S. H. Cho, “Numerical Analysis on the Power Consumption of the PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., 41(16), 4122-4131, 2002.
[33] Park, J. H., J. N. Kim, and S. H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., 46(4), 790-802, 2000.
[34] Perry, R.H., D.W. Green, and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, Inc., New York, 1984
[35] Pugsley T.S., F. Berruti and A. Chakma, “Computer Simulation of a Novel Circulating Fluidized Bed Pressure-Temperature Swing Adsorption for Recovering Carbon Dioxide from Flue Gases”, Chem. Eng. Sci., 49(22), 4465-4481, 1994.
[36] Ruthven, D.M., Principles of Adsorption & Adsorption Processes, Wiley, 208-213, 1984.
[37] Serbezov, A., and S.V. Sotirchos, “Mathematical Modeling of Multicomponent Nonisothermal Adsorption in Sorbent Particles Under Pressure Swing Conditions”, Adsorption , 4(2), 93-111, 1998.
[38] Shendalman, L.H., and J.E. Mitchell, “A Study of Heatless Adsorption in the Model System CO2 in He(I)”, Chem.Eng. Sci., 27(7), 1449-1458, 1972.
[39] Sircar, S. and T. C. Golden, “Purification of Hydrogen by Pressure Swing Adsorption”, Sep. Sci. Technol., 35(5), 667-687, 2000.
[40] Siriwardane, R.V., M.S. Shen, E.P. Fisher, and J.A. Poston, “Adsorption of CO2 on Molecular Sieves and Activated Carbon”, Energy Fuels, 15(2), 279-284, 2001.
[41] Siriwardane, R. V., M. S. Shen, and E. P. Fisher, “Adsorption of CO2 on Zeolites at Moderate Temperstures”, Energy Fuels, 19(3), 1153-1159, 2005.
[42] Skarstrom,C.W., “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960.
[43] Smith J.M., and H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill, Inc., New York, 1987.
[44] Tamura, T., “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974.
[45] Turnock, P.H., and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17(2), 335-342, 1971.
[46] Voss, C., “Applications of Pressure Swing Adsorption Technology”, Adsorption, 11(1), 527-529, 2005.
[47] Waldron, W.E., and S. Sircar, “Parametric Study of a Pressure Swimg Adsorption Process”, Adsorption, 6, 179-188, 2000.
[48] Wen, C.Y., and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[49] Yang, R.T., and S.J. Doong, ”Gas Separation by Pressure Swing Adsorption: A Pore Diffusion Model for Bulk Separation”, AIChE J., 31(11), 1829-1837, 1985.
[50] Yang, J., S. Han, C. Cho, C.H. Lee, and H. Lee, “Bulk Separation of Hydrogen Mixtures by a One-column PSA Process”, Sep. Technol., 5(4), 239-249, 1995.
[51] Yang, J., and C. H. Lee, “Adsorption Dynamics of a Layered Bed PSA for H2 Recovery from Coke Oven Gas”, AIChE J., 44(6), 1325-1334, 1998.
[52] Yang, R. T. Adsorbents: Fundamentals and Applications, Wiley-Interscience, 2003.
[53] Zhou, L., C.Z. Lu, S.J. Bian and Y.P. Zhou,”Pure Hydrogen from the Dry Gas of Refineries via a Noval Pressure Swing Adsorption Process”, Ind. Eng. Chem. Res., 401(21), 5290-5297, 2002.
[54] 廖元璋,「多塔變壓吸附法回收二氧化碳之研究」,國立中央大學,碩士論文,2002。
[55] 李建佑,「利用雙塔變壓吸附程序濃縮及回收氣化產氫製程中二氧化碳與氫氣」,國立中央大學,碩士論文,2007。
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2008-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明