博碩士論文 943204040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.232.55.175
姓名 李澤安(Tse-An Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化矽-氧化鋅複合擔體銅觸媒應用於甲醇部分氧化產製氫氣之研究
(Production of hydrogen via partial oxidation of methanol over Cu/SiO2-Zno catalysts)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討選用SiO2-ZnO、SiO2-ZrO2、SiO2-Al2O3三種複合擔體製備擔載銅觸媒,應用於甲醇部分氧化反應產製氫氣(CH3OH+0.5O2→2H2+CO2),藉以評估觸媒應用於質子交換膜燃料電池的可行性。觸媒製備先利用初濕含浸法製備SiO2-ZnO、SiO2-ZrO2、SiO2-Al2O3三種複合擔體,再利用沉澱固著法將銅負載於複合擔體上成為20wt% Cu/SiO2-ZnO、20wt% Cu/SiO2-ZrO2、20wt% Cu/SiO2-Al2O3三種觸媒。探討觸媒應用於甲醇部分氧化反應中的甲醇轉化率、氫氣選擇率及一氧化碳選擇率來探討觸媒活性優劣,並藉由量測儀器與分析技術探討觸媒的物性。藉由感應耦合電漿質譜分析儀(ICP-MS)量測銅的實際負載量,預期銅負載量20wt%之觸媒實際銅負載量約為16wt%。熱重分析儀(TGA)探討觸媒前趨物熱解情形因此決定煅燒溫度為673K。由程式升溫還原(TPR)探討觸媒的擔體效應及還原特性,結果顯示Cu/SiO2-ZnO 觸媒有較強的擔體效應。X-ray繞射儀(XRD)分析反應前後觸媒的價電子態,判斷甲醇部分氧化反應的觸媒活性點為零價態的金屬銅。藉由X-ray光電子分析儀(XPS)證實Cu/SiO2-ZnO觸媒經氫氣於600K還原一小時後能將觸媒上之氧化銅還原成零價態的金屬銅。由N2O分解吸附法(dissociative adsorption of nitrous oxide)量測銅金屬表面積及分散度,結果顯示SiO2擔體本身即提供銅高比表面積,添加ZnO為複合擔體並無法再增加銅比表面積。接著由甲醇部分氧化反應探討複合擔體相對量、觸媒煅燒溫度、O2/CH3OH反應物進料比及反應溫度等變因對反應的影響。實驗結果顯示20wt% Cu/SiO2-ZnO (Si/Zn=9/1)觸媒於673K煅燒及600K還原後、進料比O2/CH3OH=0.5、反應溫度523K等條件下對甲醇部分氧化反應有較佳的甲醇轉化率及氫氣選擇率。藉由物性及化性結果顯示添加ZnO為複合擔體之Cu/SiO2-ZnO觸媒能抑制觸媒於反應過程中產生的失活現象,並提供觸媒穩定性及產生較多的氫氣。
摘要(英) Copper supported on three different binary supports such as SiO2-ZnO, SiO2-ZrO2 and SiO2-Al2O3 were tested for partial oxidation of methanol (CH3OH + 0.5 O2 -> 2H2 + CO2) to produce hydrogen for fuel cell application. The activity of these catalysts was compared with Cu/SiO2 catalyst. The reaction parameters such as calcination temperature, O2/CH3OH molar ratio and reaction temperature were optimized. The catalyst preparation involves two steps. In the first step, the binary supports were prepared by incipient wetness impregnation method. In the second step, copper was supported on the binary support and the SiO2 support by deposition-precipitation technique. The catalysts were characterized by ICP-MS, TGA, XRD, TPR, N2O chemisorption and XPS analyses. ICP-MS analysis shows that with an initial copper loading of 20 wt % gives an actual loading of 16 wt% in the supported copper catalysts. TGA analysis signifies that minimum temperature required for decomposition of the catalyst precursor is 673 K. TPR analysis illustrates that reduction temperature of copper in Cu/SiO2-ZnO
is shifted to higher value compared to that in the case of Cu/SiO2 catalyst. This shows a strong interaction between copper metal and the binary support compared to the single support. XRD and XPS analyses indicate that copper reduced to metallic copper (Cu0) under the flow of hydrogen at 600 K. The catalyst after catalytic test shows that the metallic copper species are partially oxidized to CuO and Cu2O species. N2O chemisorption analysis indicates that copper supported on the single and binary supports have similar copper surface area and copper dispersion. Therefore by adding additional support does not increase the specific copper surface area. Catalytic activity towards hydrogen formation shows that copper catalyst supported on the binary support, SiO2-ZnO is more active than copper supported on the single support, i.e., Cu/SiO2 catalyst. Moreover, the binary supported catalysts shows higher stability compared to the copper catalyst supported on the single support. The improved activity and stability of the binary supported catalysts has been explained in terms of strong interaction between the copper metal and the support.
The measured activity for partial oxidation of methanol is decreased in this order: Cu/SiO2-ZnO > Cu/SiO2-ZrO2 = Cu/SiO2 > Cu/SiO2-Al2O3. The catalytic activity is found to be dependant on the partial pressure of oxygen, wherein the molar ratio O2/CH3OH =0.5 resulted in higher methanol conversion and higher hydrogen selectivity with lower carbon monoxide selectivity.
關鍵字(中) ★ 銅觸媒
★ 複合擔體
★ 甲醇部分氧化反應
★ 製氫
★ 沉澱固著法
關鍵字(英) ★ hydrogen
★ partial oxidation of methanol
★ copper supported catalyst
★ Cu/SiO2-ZnO
論文目次 目錄.....................................................Ⅰ
圖目錄...................................................Ⅳ
表目錄...................................................Ⅶ
第一章 緒論...........................................1
1.1 前言..............................................1
1.2 甲醇製氫反應......................................3
1.3 研究內容與論文架構................................4
第二章 文獻回顧.......................................6
2.1 銅觸媒的應用......................................6
2.2 銅觸媒的製備方法..................................7
2.3 煅燒程序..........................................9
2.4 還原程序..........................................9
2.5 銅金屬表面積測定.................................11
2.6 銅的活性點.......................................12
2.7 擔體效應.........................................13
第三章 實驗方法與裝置................................16
3.1 擔體銅觸媒的製備程序.............................16
3.1-1 複合擔體製備................................16
3.1-2銅負載在複合擔體之製備..........................17
3.2 擔體銅觸媒的鑑定分析........................19
3.2-1 感應耦合電漿質譜儀(ICP-MS)分析...............20
3.2-2 熱重分析 (TGA).................................20
3.2-3 程式升溫還原(TPR)..............................21
3.2-4 N2O分解吸附....................................23
3.2-5 X-ray繞射分析(XRD).............................25
3.2-6 X-ray光電子分析(XPS)...........................26
3.3 觸媒活性測試 - 甲醇部分氧化反應產製氫氣..........29
3.4 實驗流程與操作變因...............................31
3.5 數據計算與實例 ...................................32
3.5-1 複合擔體製備比例的計算.........................32
3.5-2 銅觸媒理論載量的定義與計算.....................32
3.5-3 甲醇轉化率的定義與計算.........................33
3.5-4 氫氣選擇率與一氧化碳選擇率的定義與計算.........38
3.6 藥品、氣體及儀器設備.............................40
3.6-1 藥品...........................................40
3.6-2 氣體...........................................40
3.6-3 儀器設備.......................................41
第四章 結果與討論....................................43
4.1 物性分析.........................................43
4.1-1 銅觸媒實際負載量測定 (ICP-MS)..................43
4.1-2 熱重分析結果 (TGA).............................45
4.1-3 程式升溫還原分析結果(TPR)......................49
4.1-4 N2O分解吸附反應的分析結果......................58
4.1-5 X-ray繞射分析結果(XRD).........................63
4.1-6 X-ray光電子分析結果(XPS).......................68
4.2 化性分析.........................................70
4.2-1 複合擔體的選擇對觸媒活性的影響.................70
4.2-2 複合擔體相對含量比對觸媒活性的影響.............75
4.2-3 煅燒溫度對觸媒活性的影響.......................79
4.2-4 反應物進料比對觸媒活性的影響...................83
4.2-5 反應溫度對觸媒活性的影響.......................87
4.3 複合擔體銅觸媒與文獻上常用觸媒應用於甲醇部分氧化反應上之分析結果比較.......................................89
第五章 結論 .........................................92
參考文獻.............................................96
參考文獻 Agrell, J., Boutonnet, M., Melian-Cabrera, I., Fierro, J.L.G., Production of hydrogen from methanol over binary Cu/ZnO catalysts”, Appl.Catal. A:Gen., 253 (2003) 201.
Alejo, L., Lago, R., Pena, M.A., Fierro, J.L.G., “Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts”, Appl. Catal. A: Gen., 162 (1997) 281.
Bond, G.C., Namijo, S.N., “An improved procedure for estimating the surface area of supported copper catalysts”, J.Catal., 118 (1989) 507.
Brown, L.F.,“A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles”, International Journal of Hydrogen Energy, 26(2001)381.
Cesar, D.V., Perez, C.A., Salim, V.M.M. and Schmal, M., “Stability and Selectivity of Bimetallic Cu-Co/SiO2 Catalysts for Cyclohexanol Dehydrogenation” , Appl. Catal. A, 176 (1999) 205.
Chang, C.K., Chen, Y.J., and The, C., “Characterizations of Alumina-supported gold with temperature-programmed reduction”, Appl. Catal. A, 174 (1998) 13.
Cunningham, J., Al-Sarred, G.H., Cronin, J.A., Healy, C., and Hirshwald, W., Appl. Catal., 25 (1986)129.
De Jong, K.P., Geus, J.W., Joziasse, J., “An infrared spectroscopic study of the adsorption of carbon monoxide on silica-supported copper oxide”, J.Catal., 65 (1980) 437.
Dietz, W.A., “Response Factors for Gas Chromatographic Analyses”, J. of G. C. February, 68 (1967).
Espinosa, L.A., Lago, R.M., and Fierro, J.L.G., “Mechanistic aspects of hydrogen producton by partial oxidation of methanol over Cu/ZnO catalysts”, Topics in Catal., 22 (2003) 245.
Eswaramoorthi, I., Sundaramurthy, V., and Dalai, A.K., “Partial oxidation of methanol for hydrogen production over carbon nanotubes supported Cu/Zn catalysts”, Appl. Catal. A, 313 (2006) 22.
Fisher, I.A., Woo, H.C., and Bell, A.T., “Effects of zirconia promotion on the activity of Cu/SiO2 for methanol synthesis from CO/H2 and CO2/H2”, Catal. Lett., 44 (1997) 11.
Fisher, I.A., and Bell, A.T., “A Mechanistic Study of methanol Decomposition over Cu/SiO2,ZrO2/SiO2, and Cu/ZrO2/SiO2”, J. Catal., 184 (1999) 357.
Franckerts, J. and Froment, G.F., “Kinetic Study of the Dehydrogenation of Ethanol”, Chem. Eng. Sci., 19 (1964) 807.
Geus, J.W., “Production and Thermal pretreatment of Supported Catalysts”, Preparation of Catalysts Ⅲ, (1983) 23.
Gil, A., Diaz, A., Gandia, L.M., Montes, M., “Influence of the preparation method and the nature of the support on the stability of nickel catalysts” , Appl.Catal.A, 109(1944)167.
Guerreiro, E.D., Gorriz, O.F., Rivarola, J.B., Arrua, L.A., “Characterization of Cu/SiO2 catalysts prepared by ion exchange for methanol dehydrogenation”, Appl.Catal. A: Gen., 165 (1997) 259.
Horny, C., Renken, A., Kiwi-Minsker, L., “Compact string reactor for autothermal hydrogen production”, Catal.Today, 120 (2007)45.
Huang, T.J., Wang, S.W., “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”,Appl.Catal., 40 (1988) 43.
Jackson, S.D., Robertson, F.J., Willis, J., “A Study of Copper/Silica Catalysts: Reduction, Adsorption and Reaction”, J. Mol. Catal., 63 (1990) 255.
Kanai, Y., Watanabe, T., Fujitani, T., Saito, M., Nakamura, J., and Uchijima, T., “Role of ZnO in promoting methanol synthesis over a physically-mixed Cu/SiO2 and ZnO/SiO2 ctatlyst”, Energy Convers. Mgmt, 36 (1995) 649.
Kington, G.L., and Holmes, J.M., Trans. Faraday Soc., 49 (1953) 417.
Kudelski, A., Pettinger, B., “Raman study on methanol partial oxidation and oxidative steam reforming over copper”, Surf. Sci., 566 (2004) 1007.
Murcia-Mascaros, S., Navarro, R.M., and Fierro, J.L.G., “Oxidative methanol reforming reaction on CuZnAl catalysts derived from hydrotalcite-like precursors”, J. Catal., 198 (2001) 338.
Oetjen, H.F., Schmidt, V.M., Stimming, U., Trila,F., “Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas”, J. Electrochem. Soc., 143 (1996) 3838.
Purnama, H., Girgsdies, F., Ressler, T., “Activity and selectivity of a nanostructured CuO/ZrO2 catalyst in the steam reforming of methanol”, Catalysis Letters, 94 (2004) 61.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction”, J.Mol.Catal.A: Chem., 162 (2000a) 275.
Reitz, T.L., Ahmed, S., Krumpelt, M., Kumar, R., Kung, H.H., “Methanol reforming over CuO/ZnO under oxidizing conditions”, Stud. Surf.Sci. Catal., 130 (2000b) 3645.
Schilke, T.C., Fisher, I.A., and Bell, A.T.,“In situ infrared study of methanol synthesis from CO2/H2 on Titania and Zirconia promoted Cu/SiO2”, J. Catal., 184 (1999) 144.
Szizybalski, A., Girgsdies, F., Rabis, A.,“In situ investigation of structure-activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol”, J. Catal., 233 (2005) 297.
Van den Oetelaar, L.C.A., Partridge,A., Staple, P.J.A.,Flipse, Brongersma, C.F.J., Brongersma, H.H., “A Surface science study of model catalysts. 2.Metal-support interactions in Cu/SiO2 model catalysts”, J. Phys. Chem. B, 102 (1998) 9532.
Van Der Grift, C.J.G., Elberse, P.A., Mulder,A., Geus, J.W., “Preparation of silica-supported copper catalysts by means of deposition- precipitation”, Appl. Catal., 59 (1990a)275.
Van Der Grift, C.J.G., Mulder, A., Geus, J.W., “Characterization of silica-supported copper catalysts by means of temperature - programmed reduction”, Appl. Catal., 60 (1990b) 181
Van Der Grift, C.J.G., Wielers, Mulder,A., Geus, J.W., “The reduction behaviour of silica-supported copper catalysts prepared by deposition - precipitation”, Thermochim. Acta, 171 (1990c) 95
Van Der Grift, C.J.G., Wielers, A.F.H., Joghi, B.P.J., Van Beijnum, J., De Boer, M., Versluijs-Helder, M., Geus, J.W., “Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles”, J.Catal., 131 (1991) 178.
Velu, S., Suzuki, K., and Osaki, T., “Selective production of hydrogen by oartial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides”, Catal. Lett., 62 (1999) 159.
Velu, S., Suzuki, K., Okazaki, M., Kapoor, M.P., Osaki, T., and Ohashi, F., “Oxidative steam reforming of methanol over CuZnAl(Zr)-Oxide catalysts for the selective production of hydrogen for fuel cells: catalyst characterization and performance evalution”, J. Catal., 194 (2000) 373.
Wang, Z., Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, Int. J. Hydrogen Energy, 28 (2003b) 151.
Yahiro, H., Nakaya, K., Yamamoto, T., Saiki, K., Yamaura, H., “Effect of calcinations temperature on the catalytic activity of copper supported on γ-alumina for the water-gas-shift reaction”, Catalysis Communications, 7 (2006) 228.
Yong-Feng, L., Xin-Fa, D., and Wei-Ming, L., “Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol”, International Journal of Hydrogen Energy, 29 (2004) 1617.
涂耀仁, 陳郁文, “銅觸媒在醇類脫氫反應之應用”, 觸媒與製程, 2(1)(1993)24.
姚品全,“淺談銅觸媒”,觸媒與製程,8(2),(2000) 47.
指導教授 張奉文(Feg-Wen Chang) 審核日期 2007-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明