博碩士論文 943204046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.228.21.186
姓名 許富賓(Fu-Bin Hus)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
(A Cross-Performance Relationship between Carr’s Index and Dissolution Rate Constant and the Application of Mixing Rules: The Study of Acetaminophen Batches)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在製藥工業上,藥物溶解速率是很重要的參數之ㄧ。藉由傳統方法來決定溶解速率是相當消耗材料與時間的。因此,發展一個能夠預測藥物溶解速率的方法是必要的。Carr’s Index與mixing rules被用來做為預測藥物溶解速率的指標。Carr’s Index原本是作為粉體流動性的指南,而mixing rules原本是發展來測量在異質系統的介電常數、多晶的熱傳導係數、電磁穿透率以及擴散係數。藥物溶解速率測試是用來測量藥物顆粒釋放速率。藥物顆粒是利用濕式造粒法製造。在經過溶解速率測試之後,收集的數據被用來計算溶解速率常數,k。最後,k-C關係式形成,並且預測範圍在經過mixing rules的計算之後能夠被標示出來。最終,藥物溶解速率透過這些方法能夠很快的決定。另外,這些方法也能夠應用在配方的發展上。藉由快速的決定藥物溶解速率,可以決定最好的配方。而本論文研究的模型藥則是對乙醯甲基氨酚。
摘要(英) In the pharmaceutical industry, the drug dissolution rate was one of the most important parameters. The determination of dissolution rate by conventional method was materials and time consuming. Hence, to develop a method to predict the drug dissolution rate was indispensable. The Carr’s Index, C and the mixing rules were used as an indicator and equations for predicting the drug dissolution rate, respectively. The Carr’s Index was guidance for the powder flowability and the mixing rules were developed originally for measuring the thermal conductivity of a polycrystal, the dielectric constant, magnetic permeability and diffusion coefficient of a heterogeneous system. The drug dissolution rate test was used to measure the drug release rate of granules. The granules were made by wet granulation. After the dissolution rate test, the collected data were utilized to calculate the dissolution rate constant, k. Finally, the k-C relationship was developed and the prediction region was indicated after calculating by mixing rules. Eventually, it is necessary only to implement a few experiments and the drug dissolution rate could rapidly determine by these methods. In addition, these methods could help the formulation development. The determination of the best formulation could be performed through the rapid determination of the dissolution rate. Acetaminophen was used as a model active pharmaceutical ingredient (API) in this thesis.
關鍵字(中) ★ 卡爾指數
★ 溶解速率常數
★ 混合率
★ 對乙醯氨基酚
關鍵字(英) ★ Carr's Index
★ dissolution rate constant
★ Mixing Rules
★ Acetaminophen
論文目次 摘要………………………………………………………………………………………I
Abstract……..………………………………………………………………………… II
Acknowledgments………….….…….………………………………………………...III
Table of Contents……………………...………………………………………………IV
List of Tables…………………..….…………………………………………………...IX
List of Figures……………..………………………………………………………….XI
Chapter 1 Executive summary………….……………………..………………………..1
1.1 Introduction………………………………………………………………….…1
1.2 Brief Introduction of Acetaminophen………………………………………….6
1.3 Conceptual Framework………………………………………………………...8
References………………………………………………………………………...13
Chapter 2 Analytical Instruments……………………………………..………………19
2.1 Introduction…………………………………………………………………...19
2.2 Thermal Analysis……………………………………………………………...22
2.2.1 Differential Scanning Calorimetry (DSC)…………………..………22
2.3 Spectroscopic Identification…………………………………………………..25
2.3.1 Ultraviolet and Visible Spectrophotometer (UV/Vis)………………..25
2.3.2 Fourier Transform Infrared (FT-IR) Microscope……………………28
2.4 Microscopic Methods…………………………………………………………30
2.4.1 Optical Microscopy (OM)…………………………………………...30
2.4.2 Scanning Electron Microscope (SEM)………………………………32
2.5 Surface Properties…………………………………………………………….35
2.5.1 Brunauer-Emmett-Teller (BET)……………………………………..35
2.5.2 Pycnometer…………………………………………………………..37
2.5.3 Sieving……………………………………………………………….40
2.5.4 Mercury Intrusion……………………………………………………42
2.6 Conclusions…………………………………………………………...………44
References……………………………………...…………………………………45
Chapter 3 A Cross-Performance Relationship between Carr’s Index and Dissolution
Rate Constant………………………………………………………………..50
3.1 Introduction…………………………...………………………………………50
3.2 Materials and Instruments…………………………………………………….57
3.2.1 Materials……………………………………………………………..57
3.2.2 Experimental Equipments…………………………………………...58
3.2.3 Analytical Instruments………………………………………………59
3.2.3.1 Dry Sieving and Tapping………………………………………59
3.2.3.2 Optical Microscopy (OM)……………………………………..61
3.2.3.3 Brunauer-Emmett-Teller (BET)………………………………..62
3.2.3.4 Pycnometer and Mercury Intrusion…………………………….62
3.2.3.5 Scanning Electron Microscope (SEM)…………………………63
3.2.3.6 Differential Scanning Calorimetry (DSC)……………………...64
3.2.3.7 Ultraviolet and Visible Spectrophotometer (UV/Vis)……….....64
3.2.3.8 Fourier Transform Infrared (FT-IR) Microscope………………65
3.3 Experiment……………………………………………………………………66
3.3.1 Preparation of Different Particle Size of Acetaminophen…………...66
3.3.2 Wet Granulation……………………………………………………..68
3.3.3 Dissolution…………………………………………………………..70
3.4 Results and Discussion……………………………………….……………….72
3.4.1 Particle and Granule Size Distribution……………………………....72
3.4.1.1 Ingredients……………………………………………………...72
3.4.1.2 Granule Size Distribution and Granule Growth Mechanism…..76
3.4.1.3 Hausner ratio and Carr’s index…………………………………82
3.4.2 Dissolution rate……………………………………………………...87
3.4.2.1 Granule Homogeneity………………………………………….87
3.4.2.2 Kinetics of Dissolution rate…………………………………….90
3.4.2.3 The relationship between the dissolution rate constant k and Carr’ index C…………………………………………………………93
3.5 Conclusions…………………………………………………………………...96
References………………………………………………………………………...99
Chapter 4 The Application of Mixing Rules……………………..………………….108
4.1 Introduction………………………………………………………………….108
4.2 Materials and Instruments…………………………………………………...113
4.2.1 Materials……………………………………………………………113
4.2.2 Experimental Equipments………………………………………….113
4.2.2.1 Ball Miller…………………………………………………….113
4.2.2.2 Granulator……………………………………………………..114
4.2.2.3 Dissolution Test Station……………………………………….114
4.2.3 Analytical Instruments……………………………………………...114
4.2.3.1 Dry Sieving……………………………………………………114
4.2.3.2 Optical Microscopy (OM)…………………………………….115
4.2.3.3 Brunauer-Emmett-Teller (BET)………………………………115
4.2.3.4 Differential Scanning Calorimetry (DSC)…………………….116
4.2.3.5 Ultraviolet and Visible Spectrophotometer (UV/Vis)………...116
4.2.3.6 Scanning Electron Microscope (SEM)………………………..117
4.3 Experiment…………………………………………………………………..118
4.3.1 Ball Milling………………………………………………………...118
4.3.2 Granulation…………………………………………………………119
4.3.3 Granular Mixing……………………………………………………120
4.3.4 Dissolution Test…………………………………………………….120
4.4 Results and Discussion………………………………………………………122
4.4.1 Particle Size Distribution…………………………………………..122
4.4.2 Granule Growth…………………………………………………….124
4.4.3 Dissolution Rate……………………………………………………125
4.4.4 Mixing Rules……………………………………………………….129
4.5 Conclusions………………………………………………………………….132
References……………………………………………………………………….133
Chapter 5 Conclusions and Future Works……………………………………..…….137
Appendix……………………………………………………………………………..A1
參考文獻 C. Han, and B. Wang, “Factors That Impact The Developability of Drug Candidates: An Overview,” Chapter 1 of Drug Delivery: Principles and Applications, edited by B. Wang, T. Siahaan, and R. Soltero, (John Wiley and Sons, Inc., New York, USA, pp. 1-5 2005)
K. Sweeny, “Technology Trends in Drug Discovery and Development: Implications for the Development of the Pharmaceutical Industry in Australia”, Draft Working Paper No. 3, Pharmaceutical Industry Project, CSES, Victoria University, Melbourne, pp. 1-29 (2002).
http://www.msd.com.hk/health_info/drug_education/e_ddp_introduction.html
H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen Particle Design Using Chitosan and a Spray-Drying Technique,” Chem. Pharm. Bull., 53(1), 37-41 (2005).
J. Hecq, M. Dellers, D. Fanara, H. Vranckx, and K. Amighi, “Prepareation and Characterization of Nanocrystals for Solubility and Dissolution Rate Enhancement of Nifedipine,” Int. J. Pharm., 299(1-2), 167-177 (2005).
Q. R. Cau, Y. W. Choi, J. H. Cui, and B. J. Lee, “Formulation, Release Characteristics and Bioavailability of Novel Monolithic Hydroxypropylmethylcellulose Matrix Tablets Containing Acetaminophen,” J. Control. Release, 108(2-3), 351-361 (2005).
M. Brigell, C. J. Dong, S. Rosolen, and R. Tzekov, “An Overview of Drug Development with Special Emphasis on The Role of Visual Electrophysiological Testing,” Documenta Ophthalmologica, 110(1), 3-13 (2005).
D. Singhal, and W. Curatolo, “Drug Polymorphism and Dosage Form Design: a Practical Perspective,” Adv. Drug Deliv. Rev., 56(3), 335-347 (2004).
W. J. Genck, “Optimizing Crystallizer Scaleup: Understanding the Impact of Mixing on Crystallization Dynamics and Determine the Optimum Conditions for Scaleup,” CEP, 99(6), 36-44 (2003).
S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T. Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the Particle Properties of a Drug Substance by Crystallizatioin Engineering and the Effect on Drug Product Formulatioin,” Org. Process Res. Dev., 9(6), 894-901 (2005).
M. Charoenchaitrakool, F. Dehghani, and N. R. Foster, “Micronization by Rapid Expansioin of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals,” Ind. Eng. Chem. Res., 39(12), 4794-4802 (2000).
A. P. Tinke, K. Vanhoutte, R. Ed Maesschalck, S. Verheyen, and H. De Winter, “A New Approach in the Prediction of the Dissolution Behavior of Suspended Particles by Means of Their Particle Size Distribution,” J. Pharm. Bio. Ana., 39(5), 900-907 (2005).
T. Lee, and J. Lee, “Particle Attrition by Particle-Surface Friction in Dryers,” Pharm. Tech. North America, 27(5), 64-72 (2003).
A. Goldszal, and J. Bousquet, “Wet Agglomeration of Powders: From Physics Toward Process Optimization,” Pow. Tech., 117(3), 221-231 (2001).
W. Pietsch, “ Agglomeration in Industry: Occurrence and Applications,” Volume 1 (WILEY-VCH Verlag GmbH & Co. KGaA, Florida, USA, 2005) p. 3
P. Vonk, C. P. F. Guillaume, J. S. Ramaker, H. Vromans, and N. W. F. Kossen, “Growth Mechanisms of High-Shear Pelletisation,” Int. J. Pharm., 157(1), 93-102 (1997).
X. Pepin, S. Blanchon, and G. Couarraze, “Power Consumption Profiles in High-shear Wet Granulation. I: Liquid Distribution in Relation to Powder and Binder Properties,” J. Pharm. Sci., 90(3), 322-331 (2001).
T. Lee, C. S. Kuo, and Y. H. Chen, “Solubility, Polymorphism, Crystallinity, and Crystal Habit of Acetaminophen and Ibuprofen by Initial Solvent Screening,” Pharm. Tech., 30(10), 72-90 (2006).
M. Hariharan, L. D. Ganorkar, G. E. Amidon, A. Cavallo, P. Gatti, M. J. Hageman, I. Choo, J. L. Miller, and U. J. Shah, “Reducing the Time to Develop and Manufacture Formulations for First Oral Dose in Humans,” Pharm. Tech., 27(10), 68-84 (2003).
S. Byrn, K. Morris, and S. Comella, “Reducing Time to Market with A Science-Based Prodduct Management Strategy,” Pharm. Tech. outsourcing resources for the Pharmaceutical Industry, 46-65 (2005).
A. K. Bansal, and V. Koradia, “The Role of Reverse Engineering in the Development of generic Formulations,” Pharm. Tech., 29(8), 50-55 (2005).
A. M. Railkar, and J. B. Schwartz, “Evaluation and Comparison of a Moist Granulation Technique to Conventional Methods,” Drug Dev. Ind. Pharm., 26(8), 885-889 (2000).
S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of Metastable Forms of Acetaminophen Studied by Thermal Fourier Transform Infrared (FT-IR) Microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002).
H. A. Garekani, J. L. Ford, M. H. Rubinstein, and A. R. R. Siahboomi, “Formation and Compression Characteristics of Prismatic Polyhedral and Thin Plate-Like Crystals of Paracetamol,” Int. J. Pharm., 187(1), 77-89 (1999).
G. Nichols, and S. Frampton, “Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from Solution,” J. Pharm. Sci., 87(6), 684-693 (1998).
www.accelrys.com, “C2. Polymorph”,Cerius2 Datasheet
M. Szelagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard, M. von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte, and R. Schenker, “In Situ Characterization of Polymorphic Forms The Potential of Raman Techniques,” J. Therm. Analy. Calor., 57(1), 23-43 (1999).
J.-L. Tsau, ”OTC Pain Medication Market: Current Status and Its Future Trends,” ITRI (2002).
The Annual Report of GlaxOSmithKline (GSK) from 2002 to 2006.
R. A. Granberg, and A. C. Rasmuson, “Solubility of Paracetamol in Pure Solvents,” J. Chem. Eng. Data., 44(6), 1391-1395 (1999).
B. A. Hendriksen, and D. J. W. Grant, “The Effect of Structurally Related Substances on the Nucleation Kinetics of Paracetamol (Acetaminophen),” J. Cry. Growth., 156(3), 252-260 (1995).
R. I. Ristic, S. Finnie, D. B. Sheen, and J. n. Sherwood, “Macro- and Micromorphology of Monoclinic Paracetamol Grown from Pure Aqueous Solution,” J. Phys. Chem. B, 105(38), 9057-9066 (2001).
C. A. Randall, S. Miyazaki, K. L. More, A. S. Bhalla, and R. E. Newnham, “Structural Property Relationships in Dielectrophoretically Assembled BaTiO3 Nanocomposites,” Mater. Lett., 15(1-2), 26-30 (1992).
J. C. Maxwell, A Treatise on Electricity and Magnetism (Clareendon Press, Oxford, England 1904), Vol. 1, p.440.
S. Torquato, “Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties,” Appl. Mech. Rev., 44(2), 37- 73(1991).
G. Simpson, “The Dielectric Constants of a Ferroelectric Ceramic,” Ferroelectrics, 6, 283-288 (1974).
H. Looyenga, “Dielectric Constants of Heterogeneous Mixtures,” Physica, 31(3), 401- 406(1965).
Z. Hashin, and S. Shtrikman, “Conductivity of Polycrystals,” Phys. Rev., 130(1), 129-133 (1963).
R. Hilfiker, F. Blatter and M. von Raumer, “Relevance of Solid-state Properties for Pharmaceutical Products,” in R. Hilfiker, “Polymorphism in the Pharmaceutical Industry,” (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 1-19.
T. L. Threlfall, “Analysis of Organic Polymorphs: A Review,” Analyst, 120(10), 2435-2460 (1995).
L. Yu, S. M. Reutzil and G. A. Stephenson, “Physical Characterization of Polymorphic Drugs: and Integrated Characterization Strategy,” PSTT, 1(3), 118-127 (1998).
D. J. W. Grant, “Theory and Origin of Polymorphism,” in H. G. Brittain, “Polymorphism in Pharmaceutical Solids,” (Marcel Dekker, Inc., New York, USA, 1999) pp. 1-33.
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 248(2), 1-59 (1995).
H. G. Brittain, S. J. Bogdanowich, D. E. Bugay, J. De Vincentis, G. Lewen and A. W. Newman, “Physical Characterization of Pharmaceutical Solids,” Pharm. Res., 8(8), 963-973 (1991).
S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg and G. Poochikian, “Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations,” Pharm. Res., 12(7), 945-954 (1995).
C. M. Sinko, “Granulation Characterization: Methods and Significance,” in D. M. Parikh, “Handbook of Pharmaceutical Granulation Technology,” (Marcel Dekker, Inc., New York, USA, 1997), pp. 419-434.
D. Giron, “Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2001).
A. Weissberger and B. W. Rossiter, “Techniques of Chemistry, VolumeⅠ Physical Methods of Chemistry: Part Ⅴ Determination of Thermodynamic and Surface Properties,” (John Wiley and Sons, Inc., New York, USA, 1971), pp. 436-437.
D. A. Skoog, F. J. Holler and T. A. Nieman, “Principles of Instrumental Analysis 5th Ed.,” (Thomson Learning, Inc. Connecticut, USA, 1998), pp. 805-808.
L. R. Koller, “Ultravilet Radiation,” 2nd Ed., (John Wiley and Sons, Inc., New York, USA, 1965), pp.1-20.
M. J. Ayora Cañada, M. I. P. Reguera, A. Mo. Diaz, and L. F. C.Vallvey, “Solid-phase UV Spectroscopic Multisensor for the Simultaneous Determination of Caffeine, Dimenhydrinate and Acetaminophen by Using Partial Least Squares Multicalibration,” Talanta, 49(3), 691-701 (1999).
J. L. Koenig, S. Q. Wang and R. Bhargava, “FTIR images: A New Technique Produces Images Worth a Thousand Spectra,” Anal. Chem., 73(no13), 360A-369A (2001).
C. S. Colley, S. G. Kazarian, P. D. Weinberg and M. J. Lever, “Spectroscopic Imaging of Arteries and Atherosclerotic Plaques,” Biopolymers, 74(4), 328-335 (2004).
C. Petibois and G. Déléris, “Chemical Mapping of Tumor Progression by FT-IR Imaging: Towards Molecular Histopathology,” Trends Biotechnol., 24(10), 455-462 (2006).
O. S. Fleming, K. L. A. Chan and S. G. Kazarian, “FT-IR Imaging and Raman Microscopic Study of Poly(ethylene terephthalate) Film Processed with Supercritical CO2,” Vib. Spectrosc., 35(1-2), 3-7 (2004).
T. H. Lee and S. Y. Lin, “Microspectroscopic FT-IR Mapping System as a Tool to Assess Blend Homogeneity of Drug Excipient Mixtures,” Eur. J. Pharm. Sci., 23(2), 117-122 (2004).
K. L. A. Chan and S. G. Kazarian, “Fourier Transform Infrared Imaging for High-Throughput Analysis of Pharmaceutical Formulations,” J. Comb. Chem., 7(2), 185-189 (2005).
K. L. Andrew and S. G. Kazarian, “ATR-FTIR Spectroscopic Imaging with Expanded Field of View to Study Formulations and Dissolution,” Lab. Chip., 6(7), 864-870 (2006).
P. A. M. Smith, “Infrared Microspectroscopy Mapping Studies of Packaging Materials: Experiment Design and Data Profiling Considerations,” Vib. Spectrosc., 24(1), 47-62 (2000).
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” J. Am. Chem. Soc., 40(9), 1361-1403 (1918).
S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60(2), 309-319 (1938).
P. A. Webb and C. Orr, “Analytical Methods in Fine Particle Technology,” (Micromeritics Instrument Corporation, Georgia, USA, 1997), pp.53-153.
Ibid., pp.193-199.
M. Viana, P. Jouannin, C. Pontier and D. Chulia, “About Pycnometric Density Measurements,” Talanta, 57(3), 583-593 (2002).
P. W. S. Heng and L. W. Chan, “Drug Substance and Excipient Characterization,” in D. M. Parikh, “Handbook of Pharmaceutical Granulation Technology,” (Marcel Dekker, Inc., New York, USA, 1997), pp. 32-34.
R. H. Perry and D. W. Green, “Perry’s Chemical Engineers’ Handbook,” 7th Ed. (The McGraw-Hill Companies, Inc., New York, USA, 1997), p. 20-9.
Ibid., pp. 19-18-19-23.
H. Giesche, “Mercury Porosimetry: A General (Practical) Overview,” PPSC, 23(1), 9-19 (2006).
K. Rübner and D. Hoffmann, “Characterization of Mineral Building Materials by Mercury-Intrusion Porosimetry,” PPSC, 23(1), 20-28 (2006).
M. J. Moura, P. J. Ferreira and M. M. Figueiredo, “Mercury Intrusion Porosimetry in Pulp and Paper Technology,” Powder Technol., 160(2), 61-66 (2005).
F. Porcheron and P. A. Monson, “Dynamic Aspects of Mercury Porosimetry: A Lattice Model Study,” Langmuir, 21(7), 3179-3186 (2005).
F. Porcheron, P. A. Monson and M. Thommes, “Molecular Modeling of Mercury Porosimetry,” Adsorption, 11(supplement 1), 325-329 (2005).
E. W. Washburn, “The Dynamics of Capillary Flow,” Phys. Rev., 17(3), 273-283 (1921).
R. Hilfiker, F. Blatter and M. von Raumer, “Relevance of Solid-state Properties for Pharmaceutical Products,” in R. Hilfiker, “Polymorphism in the Pharmaceutical Industry,” (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006) pp. 1-19.
T. L. Threlfall, “Analysis of Organic Polymorphs: A Review,” Analyst, 120(10), 2435-2460 (1995).
L. Yu, S. M. Reutzil and G. A. Stephenson, “Physical Characterization of Polymorphic Drugs: and Integrated Characterization Strategy,” PSTT, 1(3), 118-127 (1998).
D. J. W. Grant, “Theory and Origin of Polymorphism,” in H. G. Brittain, “Polymorphism in Pharmaceutical Solids,” (Marcel Dekker, Inc., New York, USA, 1999) pp. 1-33.
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterisation of Polymorphs and Solvates,” Thermochim. Acta, 248(2), 1-59 (1995).
H. G. Brittain, S. J. Bogdanowich, D. E. Bugay, J. De Vincentis, G. Lewen and A. W. Newman, “Physical Characterization of Pharmaceutical Solids,” Pharm. Res., 8(8), 963-973 (1991).
S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg and G. Poochikian, “Pharmaceutical Solids: A Strategic Approach to Regulatory Considerations,” Pharm. Res., 12(7), 945-954 (1995).
C. M. Sinko, “Granulation Characterization: Methods and Significance,” in D. M. Parikh, “Handbook of Pharmaceutical Granulation Technology,” (Marcel Dekker, Inc., New York, USA, 1997), pp. 419-434.
D. Giron, “Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2001).
A. Weissberger and B. W. Rossiter, “Techniques of Chemistry, VolumeⅠ Physical Methods of Chemistry: Part Ⅴ Determination of Thermodynamic and Surface Properties,” (John Wiley and Sons, Inc., New York, USA, 1971), pp. 436-437.
D. A. Skoog, F. J. Holler and T. A. Nieman, “Principles of Instrumental Analysis 5th Ed.,” (Thomson Learning, Inc. Connecticut, USA, 1998), pp. 805-808.
L. R. Koller, “Ultravilet Radiation,” 2nd Ed., (John Wiley and Sons, Inc., New York, USA, 1965), pp.1-20.
M. J. Ayora Cañada, M. I. P. Reguera, A. Mo. Diaz, and L. F. C.Vallvey, “Solid-phase UV Spectroscopic Multisensor for the Simultaneous Determination of Caffeine, Dimenhydrinate and Acetaminophen by Using Partial Least Squares Multicalibration,” Talanta, 49(3), 691-701 (1999).
J. L. Koenig, S. Q. Wang and R. Bhargava, “FTIR images: A New Technique Produces Images Worth a Thousand Spectra,” Anal. Chem., 73(no13), 360A-369A (2001).
C. S. Colley, S. G. Kazarian, P. D. Weinberg and M. J. Lever, “Spectroscopic Imaging of Arteries and Atherosclerotic Plaques,” Biopolymers, 74(4), 328-335 (2004).
C. Petibois and G. Déléris, “Chemical Mapping of Tumor Progression by FT-IR Imaging: Towards Molecular Histopathology,” Trends Biotechnol., 24(10), 455-462 (2006).
O. S. Fleming, K. L. A. Chan and S. G. Kazarian, “FT-IR Imaging and Raman Microscopic Study of Poly(ethylene terephthalate) Film Processed with Supercritical CO2,” Vib. Spectrosc., 35(1-2), 3-7 (2004).
T. H. Lee and S. Y. Lin, “Microspectroscopic FT-IR Mapping System as a Tool to Assess Blend Homogeneity of Drug Excipient Mixtures,” Eur. J. Pharm. Sci., 23(2), 117-122 (2004).
K. L. A. Chan and S. G. Kazarian, “Fourier Transform Infrared Imaging for High-Throughput Analysis of Pharmaceutical Formulations,” J. Comb. Chem., 7(2), 185-189 (2005).
K. L. Andrew and S. G. Kazarian, “ATR-FTIR Spectroscopic Imaging with Expanded Field of View to Study Formulations and Dissolution,” Lab. Chip., 6(7), 864-870 (2006).
P. A. M. Smith, “Infrared Microspectroscopy Mapping Studies of Packaging Materials: Experiment Design and Data Profiling Considerations,” Vib. Spectrosc., 24(1), 47-62 (2000).
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998).
I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum,” J. Am. Chem. Soc., 40(9), 1361-1403 (1918).
S. Brunauer, P. H. Emmett and E. Teller, “Adsorption of Gases in Multimolecular Layers,” J. Am. Chem. Soc., 60(2), 309-319 (1938).
P. A. Webb and C. Orr, “Analytical Methods in Fine Particle Technology,” (Micromeritics Instrument Corporation, Georgia, USA, 1997), pp.53-153.
Ibid., pp.193-199.
M. Viana, P. Jouannin, C. Pontier and D. Chulia, “About Pycnometric Density Measurements,” Talanta, 57(3), 583-593 (2002).
P. W. S. Heng and L. W. Chan, “Drug Substance and Excipient Characterization,” in D. M. Parikh, “Handbook of Pharmaceutical Granulation Technology,” (Marcel Dekker, Inc., New York, USA, 1997), pp. 32-34.
R. H. Perry and D. W. Green, “Perry’s Chemical Engineers’ Handbook,” 7th Ed. (The McGraw-Hill Companies, Inc., New York, USA, 1997), p. 20-9.
Ibid., pp. 19-18-19-23.
H. Giesche, “Mercury Porosimetry: A General (Practical) Overview,” PPSC, 23(1), 9-19 (2006).
K. Rübner and D. Hoffmann, “Characterization of Mineral Building Materials by Mercury-Intrusion Porosimetry,” PPSC, 23(1), 20-28 (2006).
M. J. Moura, P. J. Ferreira and M. M. Figueiredo, “Mercury Intrusion Porosimetry in Pulp and Paper Technology,” Powder Technol., 160(2), 61-66 (2005).
F. Porcheron and P. A. Monson, “Dynamic Aspects of Mercury Porosimetry: A Lattice Model Study,” Langmuir, 21(7), 3179-3186 (2005).
F. Porcheron, P. A. Monson and M. Thommes, “Molecular Modeling of Mercury Porosimetry,” Adsorption, 11(supplement 1), 325-329 (2005).
E. W. Washburn, “The Dynamics of Capillary Flow,” Phys. Rev., 17(3), 273-283 (1921).
S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T. Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the Particle Properties of a Drug Substance by Crystallizatioin Engineering and the Effect on Drug Product Formulatioin,” Org. Process Res. Dev., 9(6), 894-901 (2005).
M. Charoenchaitrakool, F. Dehghani, and N. R. Foster, “Micronization by Rapid Expansioin of Supercritical Solutions to Enhance the Dissolution Rates of Poorly Water-Soluble Pharmaceuticals,” Ind. Eng. Chem. Res., 39(12), 4794-4802 (2000).
A. P. Tinke, K. Vanhoutte, R. Ed Maesschalck, S. Verheyen, and H. De Winter, “A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution,” J. Pharm. Bio. Ana., 39(5), 900-907 (2005).
J. Hecq, M. Dellers, D. Fanara, H. Vranckx, and K. Amighi, “Prepareation and characterization of nanocrystals for solubility and dissolution rate enhancement of nifedipine,” Int. J. Pharm., 299(1-2), 167-177 (2005).
G. G. Liversidge, and K. C. Cundy, “Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs,” Int. J. Pharm., 125(1), 91-97 (1995).
B. Y. Shekunov, P. Chattopadhyay, J. Seitzinger, and R. Huff, “Nanoparticles of Poorly Water-Soluble Drugs Prepared by Supercritical Fluid Extraction of Emulsions,” Pharm. Res., 23(1), 196-204 (2006).
M. Mosharraf, and C. Nyström, “The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs,” Int. J. Pharm., 122(1-2), 35-47 (1995).
B. Albertini, C. Cavallari, N. Passerini, D. Voinovich, M. L. González-Rodríguez, L. Magarotto, and L. Rodriguez, “Characterizatioin and taste-masking evaluation of acetaminophen granules: comparison between different preparation methods in a high-shear mixer,” Eur. J. Pharm. Sci., 21(2-3), 295-303 (2004).
T. Lee, and J. Lee, “Particle Attrition by Particle-Surface Friction in Dryers,” Pharm. Tech. North America, 27(5), 64-72 (2003).
http://www.fda.gov/cvm/Guidance/guide176.pdf
C. A. Randall, S. Miyazaki, K. L. More, A. S. Bhalla, and R. E. Newnham, “Structural Property Relationships in Dielectrophoretically Assembled BaTiO3 Nanocomposites,” Mater. Lett., 15(1-2), 26-30 (1992).
J. C. Maxwell, A Treatise on Electricity, and Magnetism (Clareendon Press, Oxford, England 1904), Vol. 1, p.440.
S. Torquato, “Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties,” Appl. Mech. Rev., 44(2), 37- 73(1991).
G. Simpson, “The Dielectric Constants of a Ferroelectric Ceramic,” Ferroelectrics, 6, 283-288 (1974).
H. Looyenga, “Dielectric Constants of Heterogeneous Mixtures,” Physica, 31(3), 401- 406(1965).
Z. Hashin, and S. Shtrikman, “Conductivity of Polycrystals,” Phys. Rev., 130(1), 129-133 (1963).
S. Byrn, K. Morris, and S. Comella, “Reducing Time to Market with A Science-Based Prodduct Management Strategy,” Pharm. Tech. outsourcing resources for the Pharmaceutical Industry, 46-65 (2005).
A. M. Railkar, and J. B. Schwartz, “Evaluation and Comparison of a Moist Granulation Technique to Conventional Methods,” Drug Dev. Ind. Pharm., 26(8), 885-889 (2000).
W. Sorasuchart, J. Wardrop, and J. W. Ayres, “Drug Release from Spray Layered and Coated Drug-Containing Beads: Effects of pH and Comparison of Different Dissolution Methods,” Drug Dev. Ind. Pharm., 25(10), 1093-1098 (1999).
S. A. Altaf, S. W. Hoag, and J. W. Ayres, “Bead Compacts. II. Evaluation of Rapidly Disintegrating Nonsegregating Compressed Bead Formulations,” Drug Dev. Ind. Pharm., 25(5), 635-642 (1999).
T. X. Viegas, R. U. Curatella, Lise L. Van Winkel, and G. Brinker, “Measurement of Intrinsic Drug Dissolution Rates Using Two Types of Apparatus,” Pharm. Tech., 25(6), 44-53 (2001).
N. K. Ebube, A. H. Hikal, C. M. Wyandt, D. C. Beer, L. G. Miller, and A. B. Jones, “Effect of Drug, Formulation and Process Variables on Granulation and Compaction Characteristics of Heterogeneous Matrices. Part 1: HPMC and HPC Systems,” Int. J. Pharm., 156(1), 49-57 (1997).
M. J. Habib, “Pharmaceutical Solid Dispersion Technology,” (Technomic Publishing Company, Inc., Pennsylvania, USA, 2001), pp. 12.
M. N. F. Oyewo, and M. S. Spring, “Studies on Paracetamol Crystals Produced by Growth in Aqueous solutionsm,” Int. J. Pharm., 112(1), 17-28 (1994).
指導教授 李度(Tu Lee) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明