博碩士論文 943204056 詳細資訊


姓名 郭榮陞(Jung-sheng Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 醫療用氧氣濃縮機之改善與發展
(Improvement and development of medical oxygen concentrator)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) 氧氣濃縮機藉由電力運作,提供高純度的氧氣給長期需要氧氣維生的居家病患使用。濃縮機發展至今已有十到十五年,藉由變壓吸附的原理來提供高純度的氧氣。此原理是利用壓力的變化來進行分離,已普遍的應用在分離空氣的氧氣。
本研究主要利用模擬方式,採用雙塔六步驟變壓吸附程序,處理進料為78.3%N2、20.762﹪O2與0.938%Ar, 程序吸附劑採用OXYSIV-5XP。模擬時所用的氣體分離機構為平衡模式,假設吸附塔內的同一截面積上固、氣兩相瞬間達成平衡,且為非恆溫之變壓吸附模式。
此一程序可將濃度為20.762﹪O2之空氣濃縮至92%,回收率31%,本研究並探討各操作參數(諸如:塔長、吸附壓力、環境溫度、各個步驟操作時間)對程序效能的影響,此外針對小型化濃縮機尋找最佳化條件。
摘要(英) Oxygen concentrators are electrically powered devices which are designed to provide oxygen for patient who require long-term oxygen supply at home. The machine has been available for the last 10 to 15 years. It produces high oxygen concentration by pressure swing adsorption (PSA) process. The process uses variation of pressure as the main operating parameter to achieve separation and is becoming increasingly popular for the production of oxygen from air.
This study uses a two-bed six-step process. Simulation is performed for the bulk separation of N2/O2/Ar(78.3/20.762/0.938 vol %) feed. The process utilizes OXYSIV-5XP as adsorbent. This study uses the equilibrium model and the pressure drop can be neglected. We assumed instantaneous equilibrium between the solid and gas phase with non-isothermal operation.
The 20.762%O2 in the feed can be concentrated to 92%O2 in the product with a recovery of 31%. The effects of operating variables such as bed length, adsorption pressure, surrounding temperature, and steps time are investigated on the performance of this study. In addition we aim at small-scale concentrator and seek for to optimal operation.
關鍵字(中) ★ 氧氣
★ 病患
★ 空氣
★ OXYSIV-5XP'模擬
★ 氧氣濃縮機
關鍵字(英) ★ concentrators
★ patient
★ air
★ OXYSIV-
★ oxygen
論文目次 目錄 Ⅰ
表目錄 Ⅳ
圖目錄 V
第一章 緒論 1
第二章 簡介及文獻回顧 2
2.1變壓吸附之簡介 2
2.1.1變壓吸附基本原理 2
2.1.2吸附劑及其選擇性 4
2.1.3變壓吸附典型步驟 5
2.2文獻回顧 7
2.2.1 PSA程序之發展與改進 7
2.2.2理論之回顧 10
2.2.3 PSA製程在氧氣濃縮機的應用 12
第三章 理論 13
3.1基本假設 14
3.2統制方程式 15
3.3吸附平衡關係式 19
3.4參數推導 26
3.4.1軸向擴散係數 26
3.4.2管壁的熱傳係數 27
3.5起始條件與邊界條件 28
3.6求解的方法 29
3.6.1閥公式 29
3.6.2求解步驟 30
第四章 製程描述 32
4.1程式驗證 33
4.2.1四塔八步驟製程 35
4.2.2三塔六步驟製程 37
4.3雙塔六步驟之常數與操作條件 39
第五章 結果討論與數據分析 41
5.1標準雙塔大型機六步驟程序之模擬 41
5.1.1 Step1&4對六步驟製程的影響 41
5.1.2 Step2&5對六步驟製程的影響 43
5.1.3 Step3&6對六步驟製程的影響 45
5.1.4進料壓力對六步驟製程的影響 47
5.1.5塔長對六步驟製程的影響 47
5.1.6 Tank體積對六步驟製程的影響 50
5.1.7環境溫度對六步驟製程的影響 50
5.2模擬結果與驗證 54
5.3四塔大型機八步驟程序之模擬 61
5.3.1步驟時間對八步驟製程的影響 61
5.4雙塔小型機六步驟程序之模擬 66
5.4.1步驟時間對六步驟製程的影響 66
5.5四塔小型機八步驟程序之模擬 72
5.5.1步驟時間對八步驟製程的影響 72
5.6三塔小型機六步驟程序之模擬 77
5.6.1步驟時間對六步驟製程的影響 77
5.7結論 82
符號說明 86
參考文獻 88
附錄A流速之估算方法 92
參考文獻 1.Bird, R. B., W. E. Stewart,and E. N. Lightfoot, Transport phenomena, 503, Wiley, New York(1960).
2.Bu, L., Y. Liu, W. Liu, Q. Hou,and D. Zhang, “Pressure equalization process of miniature PSA air separation for oxygen generating,” Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 28(10), 989-992 (2006)
3.Chiang, A. S. T., Y. L. Chung, C. Cheng, T. Hung,and T. Y. Lee, “Experimental study on a four-bed PSA air separation process,” AIChE J., 40(12), 1976-1982 (1994)
4.Doong, S. J.,and R. T. Yang, “Bulk separation of multicomponent gas mixtures by pressure swing adsorption: pore/surface diffusion and equilibrium models,” AIChE J., 32(3), 397-410 (1986)
5.Doong, S. J.,and R. T. Yang,“Bidisperse pore diffusion model for zeolite pressure swing adsorption,” AIChE J., 33(6), 1045-1049 (1987)
6.Farooq, S.,and D. M. Ruthven, “A comparison of linear driving Force and pore diffusion models for a pressure swing adsorption bulk separation process,” Chem. Eng. Sci., 45, 107 (1990)
7.Hassan, M. M., D. M. Ruthven,and N. S. Raghavan, “Air separation by pressure swing adsorption on a carbon molecular sieve,” Chem. Eng. Sci., 41(5), 1333-1343 (1986)
8.Hassan, M. M.,and N. S. Raghavan, “Pressure swing adsorption air separation on a carbon molecular seive-II. investigation of a modified cycle with pressure equalization and no purge,” Chem. Eng. Sci., 42(8), 2037-2043 (1987)
9.Hayashi, S., M. Kawai,and T. Kaneko, “Dynamics of high purity oxygen PSA,” Gas. Sep. Purif., 10(1), 19-23 (1996)
10.Jayaraman, A.,and R. T. Yang, “Stable oxygen-selective sorbents for air separation,” Chem. Eng. Sci., 60(3), 625-634 (2005)
11.Jee, J. G., M. B. Kim,and C. H. Lee, “Pressure swing adsorption processes to purity oxygen using a carbon molecular sieve,” Chem. Eng. Sci., 60(3), 869-882 (2005)
12.Liu, Y., K. Le, J. Feng,and Q. Hou, “Experimental study on PSA air separation for miniature oxygen concentrator,” Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 23(6), p549 (2001)
13.Mendes, A. M. M., C. A. V. Costa,and A. E. Rodrigues, “Oxygen separation from air by PSA: modeling and experimental results,” Sep. Purif. Technol., 24(1), 173-188 (2001)
14.Rege, S. U., R. T. Yang ,and M. A. Buzanowski, “Sorbents for air prepurification in air separation” Chem. Eng. Sci., 55(21), 4827-4838 (2000)
15.Rege, S. U., R. T. Yang , K. Qian ,and M. A. Buzanowski, “Air prepurification by pressure swing adsorption using single/layered beds,” Chem. Eng. Sci., 56(8), 2745-2759 (2001)
16.Reynolds, S. P., A. D. Ebner,and J. A. Ritter, “Enriching PSA cycle for the production of nitrogen from air,” Ind. Eng. Chem. Res., 49(9), 3256-3264 (2006)
17.Ritter, A. J., Y. Liu, ,and S. Dharmashankar, “New vacuum swing adsorption cycles for air purification with the feasibility of complete cleanup,” Ind. Eng. Chem. Res., 37(5), 1970-1976 (1998)
18.Ruthven, D. M., “Principles of adsorption & adsorption process,” 209-213, Wiley (1984)
19.Santos, J. C., A. F. Portugal, F. D. Magalhaes,and A. Mendes, “Simulation and optimization of small oxygen pressure swing adsorption units,” Ind. Eng. Chem. Res., 43(26), 8328-8338 (2004)
20.Santos, J. C., A. F. Portugal, F. D. Magalhaes,and A. Mendes, “Optimization of medical PSA units for oxygen production”, Ind. Eng. Chem. Res., 45(3), 1085-1096 (2006)
21.Sircar, S.,and W. C. Kratz, “Pressure swing adsorption process for production of 23-50% oxygen-enriched air,” American Institute of Chemical Engineers, 1988
22.Sircar, S.,and W. C. Kratz, “Oxy-rich pressure swing adsorption process for production of oxygen enriched air”, AlChE Symp. Ser., 84(264), 141-144 (1988)
23.Yang, R. T.,and S. J. Doong, “Gas separation by pressure swing adsorption : a pore diffusion model for bulk separation,” AIChE J., 31(31), 1829-1842 (1985)
24.Zhou, L., J. Li, W. Su, Y. Sun,and Y. Zhou, “Experimental studies of a new compact design four-Bed PSA equipment for producing Oxygen,” AICHE, 51(10), 2695-2701 (2005)
25.Zhou, L., X. Ouyang, W. Li, S. Li,and Y. Zhou, “Experiments of improving the performance of disk type PSA columns in oxygen production,” Sep. Sci. Technol., 41(2), 247-259 (2006)
26.Zhang, Y., W. Yuyuan, G. Jianying,and Z. Jilin, “The experimental study on the performance of a small-scale oxygen concentration by PSA,” Sep. Purif. Technol., 42(2), 123-127 (2005)
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡