博碩士論文 943204061 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.138.199.50
姓名 陳以航(Yi-Hang Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 彩色濾光片玻璃基板再生製程強鹼染料廢液之催化濕式氧化處理
(reatment of Strong Alkaline Dyeing Wastewater from the Process of the Recovery of Color Filter Plate by Catalytic Wet Oxidation)
相關論文
★ 以溴化四丁基銨鹽電解-電透析合成醋酸四丁基銨鹽及該鹽之精製★ 溴化四丁基銨鹽之製備與其電解─電透析方法以合成氯化四丁基銨鹽之研究
★ 彩色濾光片再生製程強鹼染料廢水之電解-電透析處理以去除廢水中之KOH,並同時合成KOH與NaOCl★ 甚高濃度有機廢水之催化溼式氧化處理
★ 甚高有機污染強鹼廢水之電透析前處理★ 甲醇鈉之製備與其與二氯甲烷之液-固相轉移催化甲氧基取代
★ 醋酸丁酯之液-固相轉移催化合成及其水解研究★ 醋酸丙烯酯之液-固相轉移催化合成及其水解研究
★ 鹵化四丁基銨之合成動力學、溶解、萃取及精製研究★ 醋酸戊酯之相轉移催化水解以合成正戊醇之研究
★ 四丁基銨鹽之溶解度、締合常數、活性係數及分佈係數★ 溶劑與陰離子(Y)之結構對一典型相轉移催化親核取代反應BzCl + Bu4NY→BzY + Bu4NCl之反應性之效應
★ 溶劑、親核劑(QBr)陽離子之結構及溫度對相轉移催化反應BzCl + QBr<--> BzBr + QCl 之反應 性之效應★ 溶劑、基質結構及溫度對相轉移催化親核取代反應ROH + Bu4NCl<-->RCl +Bu4NOH 之反應 性之效應
★ 2-胺基噻吖唑衍生物合成與其性質之探討★ 合成1,3-双[5-苯基-1,3,4-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 彩色濾光片玻璃基板再生製程強鹼染料廢水氫氧化鉀濃度大約2.7 N,須降至適當的pH[9~12]才能做後續處理。而電透析是為最適降低該廢水氫氧化鉀濃度、並且回收氫氧化鉀的方法。而後續處理就是濕式催化氧化。
而本研究是以催化濕式氧化法(Catalytic Wet Air Oxidation ,CWAO)處理彩色濾光片玻璃基板再生製程強鹼染料廢水,(COD約160000-180000 ppm),pH值>13,導電度約57 mS/cm,本研究首先進行催化劑的選擇,比較五氧化二釩(V2O5)、Ru/c、及二氧化錳(MnO2)對於此反應的催化氧化能力,其反應至120分鐘後,皆能有效的使pH值下降,而COD去除率分別為V2O5 : 34.2%、MnO2 : 37.7%、Ru/C : 36.7%,其結果顯示MnO2與Ru/C有較佳的氧化力,但價格的比較上Ru/C偏高,考慮到成本的因素,所以選擇MnO2為此催化濕式氧化法處理強鹼染料廢水的催化劑。
對於有無添加催化劑的系統,進行導電度、pH值及COD去除率之比較,並改變操作參數,如反應溫度、氧氣壓力、攪拌速率、催化劑含量等可控因素對催化濕式氧化系統之影響,以尋求最適處理條件。攪拌速率方面,在400 rpm以上有較佳的COD去除率,故選擇500 rpm;而溫度方面200℃以上其pH下降較明顯,而COD去除率也較佳,但溫度220℃下反應至120分鐘後其pH值降為1.77,超出排放標準,所以選擇200℃;壓力方面隨著Po2,0(初始通入氧氣量)的增加,COD去除率也相對增加,所以選擇Po2,0 = 350 psig,而反應總壓為600 psig;催化劑量方面顯示0.032 g (3%)及0.048 g (4%)有較佳的COD除去率,故選擇0.048 g MnO2的催化劑量。
隨著反應時間的增加,二氧化碳的量也隨之增加,而減少氧氣進入反應器參與反應,為確定二氧化碳是否為影響因子,進而改變氫氧化鉀的濃度,是否因氫氧化鉀濃度增高而吸收掉二氧化碳,使氧氣能順利進入參與反應,反應式 : CO2 + KOH K2CO3 。在KOH濃度為0.27 M及0.6 M之間有較佳的COD去除率,所以選擇0.27 M為此反應的KOH濃度。
最後綜合以上結果,決定出最適化的操作參數進行反應(攪拌速率500 rpm、KOH濃度0.27 M、溫度200℃、Po2,0 = 350 psig、催化劑量0.048 g(4%)),但反應時間的增加Pco2的量已佔總壓的大部份,使Po2量下降且氧氣不易進入,所以配合多段操作的方式去除產生的二氧化碳,使氧氣能順利進入並參與反應,而本研究的成果在以上最佳操作條件下,以多段操作洩除Pco2方式,在反應210分鐘後COD去除率已達92.4%,已能使高強度的廢水被氧化分解,期望能更進一步進而達到回收再利用的標準。
摘要(英) The KOH concentration in strong alkaline dyeing wastewater from the process of the recovery of color glass filter plate is about 2.7N. The strong alkaline dyeing wastewater should be reduced to a suitable pH range of 9~12, so that it can be treated by other process. Electrodialysis is most suitable to reduce the basicity of the wastewater and simultaneously recover the KOH.
And this research is strong alkaline dyeing wastewater from the process of the recovery of color glass filter plate treatment by catalytic Wet Air Oxidation (COD 160000-180000 ppm), pH > 13, conductivity is 57 mS/cm , this research carries on the choice of the catalyst at first, compare V2O5, Ru/C and MnO2 , after 120 minutes, can all make pH drop effectively , and the COD removal is respectively V2O5: 34.2% , MnO2: 37.7% , Ru/C : 36.7%, the result to show MnO2 and Ru/C have better oxidation ability, but the price relatively has Ru/C on the high side, considering the factor of the cost , so choose MnO2 for this wet type of catalysis.
As to adding the system of the catalyst , carry on the comparison of conductivity , pH and COD removal, and change the parameter as reflecting temperature, oxygen pressure, stirring speed , amount of catalyst, in order to seek the optimum condition. stirring speed, there is better getting COD removal in above 400 rpm , so choose 500 rpm; And temperature drops more obvious in pH, but react and lower to 1.77 to its pH value after 120 minutes under 220℃, so choose 200℃; The pressure is increase with Po2, COD removal is also increase relatively, so choose Po2, 0 =350 psig, and Pt = 600 psig; the amount of Catalyst shows that 0.032 g (3% ) and 0.048 g (4% ) have better COD removal, so choose the amount of catalyst of 0.048 g MnO2.
With reflect the increase of time, the quantity of the carbon dioxide increases too, and reduce the oxygen enter the reactor , in order to confirm the carbon dioxide is the influence factor , and then change the concentration of the potassium hydroxide, whether absorb the carbon dioxide because the increase the concentration of potassium hydroxide, enable oxygen to enter and participate in reacting smoothly, reaction: CO2 + KOH K2CO3 . There is better COD removal for 0.27 M and 0.6 M in KOH concentration, so choose 0.27 M.
Synthesize the above result finally, it is determined that the optimum operation parameters (stirring speed 500 rpm , KOH concentration 0.27 M , temperature 200℃, Po2 , 0 = 350 psig ,the amonut of catalysis is 0.048 g (4% )),but with reflect the increase of time, the quantity of the carbon dioxide increases too, makes Po2 drop and difficult to enter reactor, so cooperate with many steps to operate to reject the carbon dioxide, and with the optimum conditions, the many steps, COD removal up to 92.4% already , can make strong alkaline dyeing wastewater to decompose.
關鍵字(中) ★ 催化濕式氧化
★ 彩色濾光片
關鍵字(英) ★ catalytic wet air oxidation
★ color filter
論文目次 第一章 前言
1-1 廢水處理法-------------------------------------------------------------1
1-1-1 臭氧氧化法------------------------------------------------------1
1-1-2 Fenton氧化法--------------------------------------------------2
1-1-3 光氧化法---------------------------------------------------------3
1-2 觸媒濕式氧化法-------------------------------------------------------3
1-2-1 濕式氧化法原理------------------------------------------------3
1-2-2 濕式氧化法特性------------------------------------------------4
1-2-3 濕式氧化法的發展與應用------------------------------------6
1-2-4 濕式氧化法之動力模式---------------------------------------9
1-2-5 濕式氧化法產物----------------------------------------------11
1-2-6 影響濕式氧化速率因子-------------------------------------12
1-2-6-1 反應溫度------------------------------------------------13
1-2-6-2 反應壓力------------------------------------------------13
1-2-6-3 反應時間------------------------------------------------14
1-2-6-4 催化劑---------------------------------------------------14
1-3催化濕式氧化法(CWAO)-------------------------------------------15
1-4電解-電透析方法(前處理)------------------------------------------15
1-4-1 電解-電透析裝置---------------------------------------------15
1-4-2 電解-電透析影響因子---------------------------------------16
1-4-3 電解-電透析流程---------------------------------------------16
1-5彩色濾光片的應用及原理------------------------------------------17
1-6 彩色濾光片製程-----------------------------------------------------17
1-7 研究動機--------------------------------------------------------------21
第二章 實驗部份
2-1 實驗與分析之藥品--------------------------------------------------22
2-1-1 原廢液----------------------------------------------------------24
2-2 實驗裝置及分析儀器-----------------------------------------------24
2-2-1 濕式氧化實驗裝置--------------------------------------------24
2-2-2 分析裝置--------------------------------------------------------27
2-3 實驗原理--------------------------------------------------------------27
2-4 實驗操作程序--------------------------------------------------------27
2-5 實驗項目及分析方法----------------------------------------------30
2-5-1 分析項目--------------------------------------------------------30
2-5-2 操作參數--------------------------------------------------------30
2-6 分析方法--------------------------------------------------------------30
2-7 尋求最適催化系統--------------------------------------------------33
第三章 結果與討論
3-1 彩色濾光片玻璃基板強鹼廢液分析-----------------------------37
3-2 操作條件的影響-----------------------------------------------------38
3-2-1 催化劑之選定-------------------------------------------------38
3-2-2 攪拌速率對氧化效果的影響--------------------------------43
3-2-3 KOH濃度的影響-----------------------------------------------45
3-2-4 反應溫度對氧化效果的影響--------------------------------50
3-2-5 通入氧氣壓力對氧化效果的影響--------------------------53
3-2-6 改變觸媒添加量對氧化效果的影響-----------------------55
3-3 以多段方式去除Pco2的影響--------------------------------------57
第四章 結論---------------------------------------------------61
第五章 參考文獻----------------------------------------------63
參考文獻 [1] Liu B., Yan H., Liu D.“Oxidation Techniques for Treatment Dyeing Wastewater,” (2006).
[2] 呂冠霖, 司洪濤“高濃度COD廢水氧化處理技術評析,”
[3] 陳益滽, 張藝, 詹文碩, 楊永明, 戴寶通“廢溶劑回收系統於TFT-LCD製造廠之應用,”( 2005.5).
[4] Klinghoffer Alec A., Ramon L. Cerro, Martin A. Abraham,“Catalytic Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst,”,Catalysis Today,Vol. 40, pp. 59-71 , (1998).
[5] Chowdhury A.K., Copa W.C.“Wet Air Oxidation of Toxic and Hazardous Organics in Industrial Wastewater,” Indian Chemical
Engineer, Vol. 28, No.3, pp3-11, (1996).
[6] 許雄淙“濕式氧化法處理高濃度含氰廢液之研究,” 國立台
灣大學環境工程研究所碩士論文, (1993.6).
[7] 張必杰 “以濕式氧化法處理印刷電路板顯像、去墨/剝膜廢液之研究,” 國立中央大學環境工程研究所碩士論文, (1995.7).
[8] Luck F.“Wet Air Oxidation : Past,Present and Future,”,Catalysis Today, Vol. 53, pp. 81-91, (1999).
[9] 鄒琮湣 “以觸媒濕式氧化法處理鐵氰錯化合物之研究,"國立中山大學環境工程研究所碩士論文, (1998,6).
[10] Lei L., Hu X. and Yue P.-L.,“Improved Wet Oxidation for the treatment of Dyeing Wastewater Concentrate from Membrane Separation Process,” Wat.Res ., Vol. 32, NO.9, pp. 2753-2759, (1998).
[11] Belkavemi K., Larachi F., Hamoudi S., Turcotte G., and Sayari A.“Inhibition and Deactivation Effects in Catalytic Wet Oxidation of High-strength Alcohol-Distillery Liquours,” Ind. Eng. Chem. Res., Vol. 38. pp. 2268-2274, (1999).
[12] Khan Y., G.K. Anderson, and D.J. Elliott, “Wet Oxidation of Activated Sludge,” Wat. Res., Vol.33, NO.7, pp. 1681-1687, (1999).
[13] Hubert D., Crispel S., Reilhac P., Périé F., Foussard J.N.,“Wet Air Oxidation(WAO) for The Treatment of Industrial Wastewater and Domestic Sludge. Design of Bubble Column Reactors,” Chemical Engineering Science Vol.54, pp. 4953-4959,( 1999).
[14] D. Hubert, J.N. Foussard,“Wet Air Oxidation for The Treatment of Industrial Wastes. Chemical Aspects, Reactor Design and Industrial Applications in Europe,”Waste Management, Vol. 22, pp.15-25, (2000).
[15] Mishra V.S., V.V. Mahajani, J.B. Joshi,“Wet Air Oxidation,”, Ind. Eng. Chem. Res., Vol. 53, pp. 81-91, (1995).
[16] Mirjam, H. Schoonenboom, Hans E. Zoetmeijer, Kess Olie“Dechlorination of Octachlorodibenzo-p-Dioxin and
Octachlorodibenzofuran on an Alumina Support,”, Applied Catalysis B: Environmental, Vol. 6, pp. 11-20, (1995).
[17] Belkacemi K., Larachi F., Hamoudi S., Turcotte G., and Sayari A.,“Inhibition and Deactivation Effects in Catalytic Wet oxidation of High-Strength Alcohol-Distillery Liquors,” Ind. Eng. Chem. Res., Vol. 38, pp. 2268-2274, (1999).
[18] Li L., Chen P., Gloyna E.F.,“Generalized Kinetic Model for Wet Oxidation of Orangic Compounds,” AICHE J., Vol. 37, pp. 1687. Qin Jiangyan, Ken-ichi Aika, “Catalytic Wet Oxidation of Ammonia Over Alumina Supported Metals,” Appl. Catal.B : Environmental, Vol. 16, pp. 261-268, (1998).
[19] Alep A.Klinghoffer,Raneon I. Cerho. Martin A. Abraham, “Catalysis wet oxidation of acetic acid using platinum on alumina monolith catalyst,” Catalysis Today, Vol. 40, pp. 59-71 , (1998).
[20] C. William, J. Heimbuch, and P. Schaefer,“Demonstration of Wet air Oxidation of Hazardous Waste,” Incineration Hazardous Wastes, pp. 261-269,( 1998).
[21] M.J. Dietrich, T.L. Randall, and P.J. Canney,“Wet Air Oxidation of Hazardous Organicity in Wastewater,” Environment Progress, Vol. 4, NO.3, pp. 171-177, (1985).
[22] S. Imamura, and D. Akira,“Wet Oxidation of Ammonia Catalyzed by Cerium Based Composite Oxides,” Ind. Eng. Chem. Prod. Res. Dev., Vol.24, NO.1, pp. 75-80, (1985).
[23] Junji T., Nakato T., and Okuhara T., “Selective Oxadative Decomposition of Ammonia in Water to Nitrogen Catalyzed by Platinum-supported Titania,” Chemistry Letters, pp. 277-278, (1999).
[24] Tang W., Zeng X., Zhao J., Gu G., Li Y.“The study on the wet air oxidation of highly concentrated emulsified wastewater and its kinetics,” Separation and Purification Technology 31, (2003).
[25] Dietrich M.J., T.L. Randall, and P.J. Canney,“Wet Air Oxidation of Hazardous Organicity in Wastewater,” Environmental Progress, Vol.4, NO.3, pp. 171-177, (1985).
[26] 高志明 “高溫水解併同濕式氧化處理鐵氰錯化合物之研究,”國立中央大學環境工程研究所碩士論文, (1994,6).
[27] 李炳楠,樓基中,賴俊谷,“以濕式氧化法處理2,4-二氯酚水溶液之研究,” 中華民國環境工程學會第二十四屆廢水處理技術研討會論文集,pp. 335-340, (1999).
[28] Wang T.-T., Yang W.-C.“Factors affecting the current and the voltage efficiencies of the synthesis of quaternary ammonium hydroxides by electrolysis-electrodialysis,”Chemical Engineering Journal , (2000.5).
[29] Mantzavinos M., R.Hellenbrand, A.G. Livingston and I.S. Metcalfe,“Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation,” Water Sci. Tech., Vol. 35, NO.4, pp. 119-127, (1997).
[30] Rivas, F.J., S.T. Kolaczkowski, F.J. Beltrán and D.B. mcLurgh,“Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism,”Chem.Eng.Sci.,
Vol. 53, NO.14, pp. 2575-2586, (1998).
[31] 曾明加,環保署環訓所, (2002).
[32] Hamoudi S., Larachi F., Sayari A.,“Wet Oxidation of Phenolic Solutions over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior,”JOURNAL of Catalysis 177, 247-258, (1998).
[33] 行政院環境保護署。修訂已公告無機類水質檢測方法,EPA-87-1302-03-01 計畫報告, (1998.6).
[34] APHA. Standard method for the examination of water and wastewater, 5520 chemical oxygen demand, pp .5-12~5-16. (1995).
[35] 行政院環境保護署環境檢驗所。環境檢測相關法規資料。環境檢測標準方法驗證程序準則。pp. 50-56, (1997.8).
[36] S.H.Lin , S.J.Ho,“Catalytic wet-air oxidation of high strength industrial wastewater,”, Applied Catalysis B: Environmental
,133-147, (1996).
[37] 顏駿翔,“添加Mn/r-Al2O3於觸媒濕式氧化程序處理2,4-二氯酚水溶液之研究,”,國立中山大學環境工程研究所碩士論文, (2001.6).
[38] 莊子賢,“濕式氧化及活性污泥法處理含多成分酚類化合物廢水之研究,”,私立元智大學化學工程研究所碩士論文, (1993.6).
[39] LEI L., HU X. and YUE P.-L.,“IMPROVED WET OXIDATION FOR THE TREATMENT OF DYEING WASTEWATER CONCENTRATE FROM MEMBRANE SEPARATION PROCESS”, Wat. Res. Vol. 32, NO.9, pp. 2753-2759, (1998)
[40] 周子卿,“苯之有機金屬催化氫化以合成環己烷之研究,”,國立中央大學化學工程研究所碩士論文, (1999.6).
[41] Béziat J.-C., Besson M., Gallezot P., and Durécu S.,“Catalytic Wet Air Oxidation on a Ru/TiO2 Catalyst in a Trickle-Bed Reactor,”, Ind. Eng. Chem. Res.38, 1310-1315, (1999).
[42] Besson M., Kallel A., Gallezot P., Zanella R., Louis C.,“Gold catalysts supported on titanium oxide for catalyticwet air oxidation of succinic acid”, Catalysis Comm unications 471-476, (2003).
[43] 林家驊,“添加Cu/La/Ce觸媒於濕式氧化程序處理含氨水溶液之研究”,國立中山大學環境工程研究所碩士論文, (2002.7).
[44] Cybulski A., Trawczy´nski J.,“Catalytic wet air oxidation of phenol over platinum and ruthenium catalysts,”, Applied Catalysis B: Environmental, 1-13, (2004).
指導教授 王天財(Ten-Tsai Wang) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明