博碩士論文 943204062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.189.171
姓名 林育生(Yu-sheng Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 蔗糖的同質異構型構
(Two Conformational Polymorphs of Sucrose)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這篇論文中我們有六個觀點去證明我們的研究 (1) 證明蔗糖有第二種同質異構型構,(2) 使用23種在製藥界上常用純溶劑使用在糖類篩選上, (3)使用固態分析法(SSNMR, SXD) 去證明蔗糖的第二種型態, (4) DSC上顯示在150℃上波峰的固態-固態間傳遞,且蔗糖有兩種同質異構型構之間變換,從第二種型構轉成第一種型構, (5)利用再結晶法使用反溶劑(甲醇)製造第二種型構的蔗糖, (6) 研究蔗糖的同質異構型構當做配方在藥物載體上的影響, 在這篇論文中有三個重要的方向被用來增進整個糖業研發的效率。 首先我們利用使用23種有機溶劑篩選的方式,有關蔗糖溶解度(solubility)、多型晶體(polymorph)、晶體外貌(crystal habit)、以及結晶度(crystallinity)的資料被完整收集。 一種粗糙但簡單方便且只需要少量樣品的篩選方法也將在本論文中介紹。 第二,我們利用數種儀器法例如熱分析法(DSC)、固態核磁共振儀 (SSNMR)、單晶繞射儀 (SXD)、卡爾費雪水份滴定分析法(KF)和數位式折射計去證明蔗糖的同質異構型構。 第三,我們研究把蔗糖當作藥物載體去影響藥物的釋放速率。 我們可以預期型構一和型構二的蔗糖將會影響藥物的釋放速率對製藥界影響甚大。
摘要(英) In this thesis, we listed six points to demonstrate the significance of the work (1) the identification of conformational polymorph of FormⅡ sucrose, (2) using 23 kinds of pure solvents commonly used in pharmaceutical technology in sugar screening, (3) using solid-state instrumental methods (SSNMR, SXD) to demonstrate the presence of Form II sucrose, (4) showing that the DSC peak at 150°C was the enthalpy of the solid-solid transformation between the two conformational polymorphs of sucrose crystals changing from Form II to Form I, (5) using anti-solvent (methanol) for re-crystallizing Form II sucrose, (6) investigated the influence conformational polymorphs of sucrose as an excipient in the formulation. Three important studies in this thesis were performed to improve the efficiency of the discovery and development process. Firstly, a useful engineering data bank of solubility, polymorphism, crystal habits and crystallinity by initial solvent screening for sucrose was be established and a robust, miniature solvent screening method was be introduced. Secondly, we used several instrumental methods to demonstrate the presence of conformational polymorph of FormII sucrose such as differential scanning calorimetry (DSC), solid-state NMR (SSNMR), single-crystal x-ray, diffractometer (SXD), Karl Fischer titrimetry (KF) ,and refractometer sensor. Thirdly, we investigated the influence of sucrose in formulation as an excipient. We expect that FormⅠand FormⅡ sucrose crystals will affect the drug release rate.
關鍵字(中) ★ 蔗糖的同質異構型構
★ 蔗糖
關鍵字(英) ★ Conformational Polymorphs of Sucrose
★ Sucrose
論文目次 摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………… II
Acknowledgments…………………………………………………………………….. IV
Table of Contents………………………………………………………………………..V
List of Figures………………………………………………………………………….IX
List of Tables…………………………………………………………………………XVI
Chapter 1 Executive summary…………………………………………………………..1
1.1 Introduction…………………………………………………………….….…1
1.2 Brief Introduction of Sucrose………………………………………….……..6
1.3 Conceptual Framework………………………………………………….…...7
References………………………………………………………………………...11
Chapter 2 Analytical Instruments…………………..……………………………….…16
2.1 Introduction………………………………………………………………….16
2.2 Thermal Analysis…………………………………………………………....19
2.2.1 Differential Scanning Calorimetry (DSC)……………………………19
2.2.2 Thermogravimetry Analysis (TGA)………………………………….22
2.3 Spectroscopic Identification………………………………………………....24
2.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy…………………...24
2.3.2 Solid-State NMR Measurements (SSNMR)………………………...26
2.3.3 Ultraviolet and Visible Spectroscopy (UV/Vis)……………………..29
2.4 Crystallography……………………………………………………………….32
2.4.1 X-ray powder diffractometry (PXRD)………………………............32
2.4.2 Single-Crystal X-Ray Diffractometer (SXD)………………………..35
2.5 Microscopic Methods…………………………………...…………………..35
2.6 The refractometer sensor…………………………………………...……….41
2.7 Karl Fischer Titration……………………………………………………….43
2.8 References……………..………………...………………………………….47
Chapter 3 Initial Solvent Screening of Sucrose: Solubility, Polymorphism, Crystal habits, and Crystallinity……………………………………………………..55
3.1 Introduction………………………...………………………………………..55
3.1.1 Solubility…………………………………………………………….56
3.1.2 Polymorph…………………………………………………………...58
3.1.3 Crystal habit…………………………………………………………61
3.1.4 Crystallinity………………………………………………………….61
3.2 Materials……………….…………………………………………………….62
3.3 Experiment…………………………………………………………………..68
3.3.1 Solubility Test……………………………………………..………....68
3.3.2 Anti-solvent Test…………………………………………………….69
3.3.3 Polymorph and Morphology Instrumental Study………..…………..70
3.4 Results and Discussion.……………………………………………………...73
3.4.1 Polymorph study………………………….………………………....73
3.4.2 Morphology Study………………………………...…………………81
3.4.3 Solubility Analysis…………………………………………………..85
3.4.4 Temperature Diagram for Sucrose Polymorphs Study………………89
3.5 Conclusions……………………………………………………………….....91
References………………………………………………………………………...93
Chapter 4 Identification Form II Conformational Polymorphs of Sucrose…….…….101
4.1 Introduction………………………………………………………………...101
4.2 Materials ……………..…………………………………………………….105
4.3 Experiment Methods…………………………………….…………………106
4.3.1 Preparation of Form II Sucrose Samples………………..………....106
4.3.2 OM Analysis………………….……………………………………106
4.3.3 Standard Sucrose Solutions and Calibration Curve Study…………107
4.3.4 Saturation Sucrose Solutions……………………………………….107
4.3.5 Polymorph Instrumental Study……………………………………..108
4.4 Results and Discussion.…………………………………………………….111
4.4.1 Solid-State NMR (SSNMR) Study….……………………………...111
4.4.2 Single-Crystal X-ray Diffractometer (SXD)……………………….114
4.4.3 Low Scanning Speed DSC Study………………..…………………118
4.4.4 High Scanning Speed DSC Study………………………………….119
4.4.5 Solubility Curve Study……………………………………………..120
4.5 Conclusions………………………………………………………………...123
References……………………………………………………………………….124
Chapter 5 Dissolution Study………………………………………………………...131
5.1 Introduction………………………………………………………………..131
5.2 Materials…………………………………………………………………...134
5.3 Experimental Methods…………………………………………………….134
5.3.1 Preparation of Samples…………….……………………………….134
5.3.2 Dissolution Tests…………………………………………………...136
5.4 Results and Discussion..…………………………………………………...139
5.4.1 Sample Analysis……………………………………………………...139
5.4.2 Dissolution Test………………………………………………………147
5.5 Conclusions……………..………………………………………………....146
Chapter 6 Conclusions and Future Works……………………………………….153
Summary of references………………………………………………………...……...156
參考文獻 Chapter 1
1. P. Honig, “Chemical properties of sucrose,” Chapter 1 of principle of sugar
technology 1st ed, (West Indies Sugar Corporation, New York, USA, 1965),
pp1-8
2. http:// 64.233.179.104/translate 中天期貨 Joint Future
3. 陳治玄,“登糖入室,”台灣糖業研究所“科學發展”384, 56-61 (2004)
4. P. Honig, chapter 1 “Chemical properties of sucrose,” Principle of sugar
technology ,1st ed, Technical Research Director West Indies Sugar Corporation,
New York, USA, 1965, pp24-25
5. S. V. Shah, and Y. M. Chakradeo “A note of the melting point of cane sugar,”
Current Sci.,4, p652 (1936)
6. P. Fryer and K. Pinschower, “The materials science of chocolate,” MRS Bull.,
25(12), 25-29 (2000)
7. A. Saleki-Gerhardt and G. Zografi, “Non-isothermail crystallization of sucrose
from the amorphous state,” Pharm. Res., 11(8), 1166-1173 (1994)
8. J. C. P. Chen, “The crystallization of sugar,” Chapter 10 of cane sugar handbook
11th ed, (International Sugar Consultant, New York, USA, 1965), pp276-343
9. M. Okuno, S. Kishihara, M. Otsuka, S. Fujill, and K. Kawasaki, “Variability of
melting behavior of commercial granulated sugar measured by differential
scanning calorimetry,” Int. Sugar J., 105(1249), 29-35 (2003)
10. M. Hurtta, I. Pitkanen, and J. Knuutinen, “ Melting behaviour of D-sucrose,
D-glucose and D-fructose,” Carbo. Res., 339(13), 2267–2273 (2004)
11. S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea and A. P. E.
Maulny, “DSC study of sucrose melting,” Carbo. Res., 341(15), 2591–2599
(2006)
12. P. Honig, “Chapter 1 in chemical properties of sucrose,” Principle of sugar
technology ,1st ed, (West Indies Sugar Corporation, New York, USA, 1965),
pp24-25
13. G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential
scanning calorimetry and thermogravimetric analysis to characterize the thermal
degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric. Food Chem., 44(10), 3319-3325 (1996)
14. B.I.M. Grimsey, and T. M. Herrington, “The formation of inclusions in sucrose
crystals,” Int. Sugar J., 96(1152), 504-514 (1994)
15. N. Blagden, R. J. Davey, H. F. Lieberman, L. William, R. Payne, R. Roberts, R.
Rowe and R. Docherty, “Crystal chemistry and solvent effects in polymorphic
systems sulfathiazole,” J. Chem. Soc., Faraday Trans., 94(8), 1035-1044 (1998)
16. M. Lahav and L. Leiserowitz, “The effect of solvent on crystal growth and
morphology,” Chem. Eng. Sci., 56(7), 2245-2253 (2001)
17. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000)
18. D. Giron, “Thermal analysis and calorimetric methods in the characterization of
polymorphs and solvates,” Thermochem. Acta, 248(2), 1-59 (1995)
19. A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G.
Marangoni, “Solvent effects on the crystallization behavior of milk fat fractions”
J. Agric. Food Chem., 48(4), 1033-1040 (2000)
20. S. L. Morissettea, O. Almarssona, M. L.Petersona, J. F. Remenara, M. J. Reada,
A. V. Lemmoa, S. Ellisa, M. J. Cimab, and C. R. Gardnera, “High-throughput
crystallization: polymorphs, salt, co-crystals and solvates of pharmaceutical
solids,” Adv. drug Del. Rev., 56(3), 275-300 (2004)
21. P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar
technology 1rd ed, (West Indies Sugar Corporation: New York, USA, 1965),
pp2-3
22. P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar
technology 1st ed, (West Indies Sugar Corporation: New York, USA, 1965),
pp1-3
23. M. S. Jeffery “Key functional properties of sucrose in chocolate and sugar
confectionery,” Food Tech., 47(1-3), 141-144 (1993)
24. A. Awad and A. C. Chen, “A new generation of sucrose products made by
cocrystallization,” Food Tech., 47(1-3), 146-148 (1993)
25. A. A. Joshi and X. Duriez, “ Added functionality excipients: an answer to
challenging formulations,” Pharm. Tech., 12, 12-19 (2004)
26. R. Hilfiker, “Relevance of solid-state properties for pharmaceutical products ,”
Chapter 1 of Polymorphism, (In the pharmaceutical industry, 1st Ed, Weinheim,
2006), pp13-14
27. M. L. P. Leitao, J.Canotilho, M. S. C.Cruz, J. C. Pereira, A.T. Sousa, and J. S. Redinha, “Study of polymorphism from DSC melting curves,” J. Therm. Anal.
Calorim., 68(2), 397-412 (2002)
28. C. McGregor, M. H. Saunders, G. Buckton , and R. D. Saklatvala, “The use of
high-speed differential scanning calorimetry (Hyper-DSCTM) to study the
thermal properties of carbamazepine polymorphs,” Thermochim. Acta, 417(2),
231–237 (2004)
29. R. Hilfiker, “Characterization of polymorphic systems using thermal analysis,”
Chapter 3 of Polymorphism, In the pharmaceutical industry, 1st ed., Weinheim,
2006, pp71
30. S. R. Byrn, P. A. Sutton, B. Tobias, J. Frye, and P. Main, “The crystal structure,
solid-state NMR Spectra, and oxygen reactivity of five crystal forms of
prednisolone tert-butylacetatet,” J. Am. Chem. Soc., 110(5), 1609-1614 (1988)
31. U. R. Desai, I. R. Vlahov, A. Pervin, and R. J. Linhardt, “Conformational
analysis of sucrose octasulfate by high resolution nuclear magnetic resonance
spectroscopy,” Carbo. Res., 275(2), 391-401 (1995)
32. B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder,D. J. W. Grant, and E.J.
Munson, “Comparison of solid-state 13C NMR spectroscopy and powder X-ray
diffraction for analyzing mixtures of polymorphs of neotame,” Anal. Chem.,
71(16), 3325-3331 (1999)
33. D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in
the presence of chiral impurities,” Cryst. Growth Des., 5(6), 2173-2179 (2005)
34. B. Rodrıguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N.
Rodrıguez-Hornedo, “General principles of pharmaceutical solid polymorphism:
a supramolecular perspective,” Advanced Drug Del Rev., 56(2), 241– 274 (2004)
35. P.T Cardew, and R. J. Davey, “The kinetics of solvent-mediated phase
transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985)
36. C. R. Chen, Y. H. lin, S. L. Cho, S. H. Yen, and H. L. S. Wu, “ Investigation of
the dissolution difference acidic and neutral media of acetaminophen tables
containing a super distintegrant and a soluble excipient,” Chem. Pharm. Bull.,
45(3), 509-512 (1997)
Chapter 2
1. H.Gloria, and D. Sievert, “Changes in the physical state of sucrose during dark
chocolate processing,” J.Agric. Food Chem., 49(5), 2443-2436 (2001)
2. T. Yoshinari, R.T. Forbes, P. York, and Y. Kawashima, “Moisture induced
polymorphic transition of mannitol and its morphological transformation,” Int. J.
of Pharm., 247(1-2), 69-77 (2002)
3. L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence
of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm.
Sci., 88(2), 196-198 (1999)
4. T.Yoshinari, R.T. Forbes, P. York, and Y. Kawashima, “Moisture induced
polymorphic transition of mannitol and its morphological transformation,” Int. J.
Pharm., 247(9), 69-77 (2002)
5. P. Di Martino, A-M. Guyot-Hermann, P. Conflant, M. Drache, and J-C. Guyot,
“A new pure paracetamol for direct compression:the orthorhombic form,” Int. J.
Pharm., 128(1-2), 1-8 (1996)
6. M. Okuno, S. Kishihara, M. Otsuka, S. Fujill, and K. Kawasaki, “Variability of
melting behavior of commercial granulated sugar measured by differential
scanning calorimetry,” Int. Sugar. J., 105(1249) 29-35 (2003)
7. M. Hurtta, I. Pitkanen, and J. Knuutinen, “Melting behavior of D-sucrose,
D-glucose and D-fructose,” Carbo. Res., 339(13), 2267–2273 (2004)
8. S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea, and A. P. E.
Maulny, “DSC study of sucrose melting,” Carbo Res., 341(15), 2591–2599
(2006)
9. P. Fryer, and K. Pinschower, “The materials Science of Chocolate,” MRS Bull.,
25(12), 25-29 (2000)
10. L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of
polymorphic drugs: an integrated characterization strategy,” PSTT 1(3), 118-127
(1998)
11. K. L. A. Chan, and S. G. Kazarian, “Fourier transform infrared imaging for
high-throughput analysis of pharmaceutical formulation,” J. Comb. Chem., 7(2),
185-189 (2005)
12. T. C. Huang, “Automatic X-ray single crystal structure analysis system for small
molecule,” The Rigaku J., 21(2), 43-46 (2004)
13. M. J. Arias, J. M. Gines, J. R. Moyano, J. I. Perez-Martinez, and A. M. Rabasco,
“Influence of the preparation method of solid dispersions on their dissolution
rate:study of triamterene D-mannitol system,” Int. J. of Pharm., 123(1), 25-31
(1995)
14. B.Snider, P. Liang, and N. Pearson, “Implementation of water-activity testing to
replace Karl Fischer water testing for solid oral-dosage forms,” Pharm. Tech.,
31(2), 1-10 (2007)
15. L. A. Peter, and P. L. G.. Christopher, “The effect of hexose upon pol, brix and
calculated CCS in sugarcane: a potential for negative pol bias in juice from
actively growing cane,” J. Am. Soc. S. Cane Tech., 24(4), 185-198 (2004)
16. L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of
polymorphic drugs: an integrated characterization strategy,” Pharm. Sci. Tech.
Today, 1(3), 118-127 (1998)
17. P. J. Haines, and F. W. Wilburn, “Thermal methods of analysis- principles
differential,” Chapter 3 of Thermal Analysis and Differential Scanning
Calorimetry, Applications and Problems, 1st ed, Blackie Academic and
Professional, New York, USA, 1995, pp.63- 89
18. E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N.
Drebushchak, “DSC and adiabatic calorimetry study of the polymorphs of
paracetamol,” J. of Therm. Anal. Calor., 77(2), 607-623 (2004)
19. T. L. Threlfall, “Analysis of organic polymorphs : A Review,” The analyst,
120(10), 2435-2460 (1995)
20. D. Giron, “Thermal analysis and calorimetric methods in the characterization of
polymorphs and solvate,” Thermochim. Acta, 248(2), 1-59 (1995)
21. A. J. Pasztor, “Thermal analysis techniques,” Chapter 50 of Handbook of
Instrumental Techniques for Analytical chemistry, F. A. Settle, Prentice Hall PTR,
New Jersey, USA, 1997, pp.909-917
22. P. J. Haines, and F. W. Wilburn, “Differential thermal analysis and differential
scanning calorimetry,” Chapter 3 of Thermal Methods of Analysis- Principles, 5th
ed, Applications and Problems, Peter J. Haines, Blackie Academic and
Professional, New York, USA, 1995, pp.63- 89
23. B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo,
“General principles of pharmaceutical solid polymorphism a supramolecular
perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004)
24. K. Urakami, Y. Shono, A. Higashi, K. Umemoto, and M. Godo, “A novel method
for estimation of transition temperature for polymorphic pairs in pharmaceuticals
using heat of solution and solubility data,” Chem. Pharm. Bull., 50(2), 263-267
(2002)
25. T. Hatakeyama, and Z. Liu, “Conformation of TA apparatus,” Chapter 2 of
Handbook of Thermal Analysis, 1st ed, John Wiley & Sons, Baffins Lane,
England, 1998, pp.17-19
26. G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential
scanning calorimetry and thermogravimetric analysis to characterize the thermal
degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric.
Food Chem., 44(10), 3319-3325 (1996)
27. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of instrucmental analysis,
5th ed, Thomson Learnin, Mississippi, USA, 2001, pp.182-183
28. F. Rouessac, and A. Rouessac, “Chemical analysis- modern instrumentation
methods and Techniques,” Chapter 10 of Infrared Apectroscopy, 1st ed, John
Willy & Sons, chichester, England, 2001, pp.170-173
29. H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen particle
design using chitosan and a spray-drying technique,” Chem. Pharm. Bull., 53(1),
37-41 (2005)
30. D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to spectroscopy: a
guide for students of origanic chemistry,” Chapter 2 of Infrared Spectroscopy, 1st
ed, Thomson Learning, Inc., USA, 2001, pp.45-68
31. J. W. Lubach, and E. J Munson, “Solid-state spectroscopy,” Chapter 4 of
Polymorphism, In the pharmaceutical industry, 1st ed, Weinheim, R. Hilfiker,
Germany, 2006, pp.81-82
32. J. W. Lubach, and E. J Munson, “Solid-state spectroscopy,” Chapter 4 of
Polymorphism, In the pharmaceutical industry, 1st ed, Weinheim, R. Hilfiker,
Germany, 2006, pp.83-84
33. T. J. Offerdahl, “Solid-State Nuclear Magnetic Resonance Spectroscopy for
Analyzing Polymorphic Drug Forms and Formulations,” Pharm. Tech., 30(2),
24-42 (2006)
34. L. R. Chen, B. E. Padden, S. R. Vippagunta, E. J. Munson, and D. J. W. Grant,
“Nuclear magnetic resonance and infrared spectroscopic analysis of nedocromil
hydrates,” Pharm. Res., 17(5), 619-624 (2000)
35. T. L. Threlfall, “Analysis of organic polymorphs a review,” Anal. Oct., 120(17),
2435-2460 (1995)
36. J. W. Lubach, and E. J Munson, “Solid-state spectroscopy,” Chapter 4 of
Polymorphism, 1st ed, In the pharmaceutical industry: Weinheim, Germany, 2006,
pp82-84
37. M. Sezlagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard,
M.von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte, and R. Schenker, “ In
situ characterization of polymorphic forms,” J. of Therm. Anal. and Calor., 57(1),
23-43 (1999)
38. T. W. Adorno, “The form of the phonograph record,” JSTOR Arts and Sciences October, 55, 56-61 (1990)
39. J. McMurry, “In chapter 14 Conjugested dienes and ultraviolet spectroscopy,”
Organic Chemistry, 6th ed, Thomson Learning, USA, pp.482-484, 2004
40. D. A. Skoog, F. J. Holler, and T. A. Nieman, “An introduction to ultraviolet/
visible molecular absorption spectrometry,” Chapter 13 of Principles of
Instrucmental Analysis, 5th ed, Thomson Learnin., USA, 2001, pp300-306
41. J. A. Howell, “Ultraviolet and visible molecular absorption spectrometry,”
Chapter 25 of Handbook of Instrumental Techniques for Analytical chemistry, F.
A. Settle, Prentice Hall PTR, New Jersey, USA, 1997, pp.481-493
42. D. L. Pavia, G. M. Lampman, and G. S. Kriz, “In chapter 7 Ultraviolet
Spectroscopy,” Introduction to spectroscopy: a guide for students of origanic
chemistry, 3rd ed, Thomson Learnin., USA, 2001, pp3535-3545
43. M. J. Ayora Cañada, M. I. P. Reguera, A. Mo. Diaz, and L. F. C.Vallvey,
“Solid-phase UV spectroscopic multisensor for the simultaneous determination
of caffeine, dimenhydrinate and acetaminophen by using partial least squares
multicalibration,” Talanta, 49(3), 691-701 (1999)
44. J. Formica, “X-ray diffraction,” Chapter 18 of Handbook of Instrumental
Techniques for Analytical chemistry, edited by F. A. Settle, Prentice Hall PTR,
New Jersey, USA, pp.339-353 (1997)
45. T. C. Huang, “Automatic x-ray single crystal structure analysis system for small
molecule,” The Rigaku J., 21(2), 43-46 (2004)
46. T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the operating microscope:
from magnifying glass to microneurosurgery,” Neu., 42(4), 899-907 (1998)
47. K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Chapter
5 of Powder Technology Hand Book, 2nd ed, USA, 1997, pp720-730
48. K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder
Beds,” Chapter 3 of Powder Technology Hand Book, 2nd ed, USA, 1997,
pp.413-423
49. K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Chapter
5 of Powder Technology Hand Book, 2nd ed, USA, 1997, pp.659-661
50. http://micro. Magnet. Fsu.edu/ optics/lightandcolor/lenses.htm, “Introduction to
lenses.”
51. S. Mccarthy, and J.Billingsley, “A sensor for the sugar cane harvester topper,”
Sen. Rev., 22(3), 242-246 (2002)
52. H.S. Lu, H. R.Xu, Y.B. Ying, X. P. Fu, H. Y. Yu, and H. Q. Tian, “Application fourier transform near infrared spectrometer in rapid estimation of soluble solid
content of intact citrus fruits,” J. Z. Univ. Sci. B 7(10), 794-799 (2006)
53. J. E. Brown, and B. G.. Liptack, “Refractometer,” in Liptak, B. G.. (ED.), Process
measurement and analysis, Randnor, PA, 1995, pp 1191-1196
54. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fibre bragg
grating refractometer,” Meas. Sci. Technol., 12(7), 757-764 (2001)
55. S. A. Margolis, “Amperometric measurement of moisture in transformer oil
using Karl Fischer reagents,” Anal. Chem., 67(23), 4239-4246 (1995)
Chapter 3
1. Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and
M. Muthukumar, “Structure development during crystallization of homogeneous
copolymers of ethene and 1-octene: time-resolved synchrotron x-ray and SALS
measurements,” Macromol., 32(3), 765-770 (1999)
2. H. Ahari, Robert L. Bedard, Carol L. Bowes,Neil Coombs, G.. A. Ozin, S.Petrov,
I. Sokolov, A. Verma, Gregory Vovk, and D. Young, “Effect of microgravity on
the crystallization of a selfassembling layered material,” Nat., 388(6645),
857-860 (1997)
3. A. J. Wright, S. E. Mcgauley, S. S. Narine, W. M. Willis, R.W. Lencki, and A. G..
Marangoni, “Solvent effect on the crystallization behavior of milk fat fractions,”
J. Agric. Food Chem., 48(4), 1033-1040 (2000)
4. K. Gotoh, H. Masuda, and K. Higashitani, “Preparation of powder,” Chapter 6 of
Powder Technology Hand Book, 2nd ed, Marcel Deekker, New York, USA, 1997,
pp459-468
5. S. L. Morissettea, O. Almarssona, M. L.Petersona, J. F. Remenara, M. J. Reada,
A. V. Lemmoa, S. Ellisa, M. J. Cimab, and C. R. Gardnera, “High-throughput
crystallization: polymorphs, salt, co-crystals and solvates of pharmaceutical
solids,” Adv. drug Del. Rev., 56(3), 275-300 (2004)
6. A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G.
Marangoni, “Solvent effects on the crystallization behavior of milk fat fractions,”
J. Agric. Food Chem., 48(4), 1033-1040 (2000)
7. A. Gracin, and A.C. Rasmuson, “Solubility of Phenylacetic acid,
p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
and ibuprofen in pure solvents,” J. Chem. Eng. Data, 47(6), 1379–1383 (2002)
8. D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in
the presence of chiral impurities,” Cryst. Growth Des., 5(6), 2173-2179 (2005)
9. W.L. McCabe, J.C. Smith, and P. Harriott, “Mechanical separations,” Chapter 29
of Unit Operations of Chemical Engineering, 6th ed, McGraw Hill Co, New York,
USA, , 2001, pp.1017
10. T. Threlfall, “Crystallisation of polymorphs: thermodynamic insight into the role
of solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000)
11. B.C. Hancock et al., “Comparison of the mechanical properties of the crystalline
and amorphous forms of a drug substance,” Int. J. Pharm., 241(1), 73–85 (2002)
12. H. Egawa et al., “Solubility parameter and dissolution behavior of cefalexin
powders with different crystallinity,” Chem. Pharm. Bull., 40(3), 819–820 (1992)
13. P. D. Martino et al., “Influence of crystal habit on the compression and the
densification mechanism of ibuprofen,” J. Crys. Growth., 243(2), 345–355
(2002)
14. W. Beckmann, “Seeding the desired polymorph: background, possibilities,
limitations, and case studies,” Org. Process Res. Dev., 4(5), 372-383 (2000)
15. M. Lahav, and L. Leiserowitz, “A stereochemical approach that demonstrates the
effect of solvent on the growth of polar crystals: a perspective,” Crys. Growth
Des. 6(3), 619–624 (2003)
16. C-H Gu, V. Young, and D. J. W. Grant, “Polymorph screening : influence of
solvents on the rate of solvent-mediated polymorphic transformation,” J. Pharm.
Sci., 90(11), 1878-1890 (2001)
17. L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of
polymorphic drugs: an integrated characterization strategy,” PSTT, 1(3), 118-127
(1998)
18. B. Rodrıguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N.
Rodrıguez-Hornedo, “General principles of pharmaceutical solid polymorphism:
a supramolecular perspective,” Advanced Drug Del Rev., 56(2), 241– 274 (2004)
19. J. Bernstein, R. J. Davey, and J-O Henck, “Concomitant polymorphs,” Angew.
Chem. Int. Ed., 38(23), 3440 – 3461 (1999)
20. D. Giron, “Thermal analysis and calorimetric methods in the characterisation of
polymorphs and solvates,” Thermochem. Acta., 248(2), l-59 (1995)
21. C. Mao, R. Pinal, and K. R. Morris, “A quantitative model to evaluate solubility
relationship of polymorphs from their thermal properties,” Pharm. Res., 22(7),
1149-1157 (2005)
22. L. Threlfall, “Analysis of organic polymorphs a review,” Anal., 120(10),
2435-2460 (1995)
23. P.T Cardew, and R. J. Davey, “The kinetics of solvent-mediated phase
transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985)
24. K. Sato, “Polymorphic transformations in crystal growth,” J. Phys. D Awl. Phys.,
26(8) B77-84 (1993)
25. K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of solubility of
polymorphs using differential scanning calorimetry,” Cryst. Growth Des., 3(6),
991-995 (2003)
26. A. K. Tiwary, “Modification of crystal habit and its role in dosage form
Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
27. N. Blagden, R. J. Davey, H. F. Lieberman,L. William, R. Payne, R. Roberts, R.
Rowe, and R. Docherty, “Crystal chemistry and solvent effects in polymorphic
systems sulfathiazole,” J. Chem. Soc., Faraday Trans., 94(8), 1035-1044 (1998)
28. M. Lahav, and L. Leiserowitz, “The effect of solvent on crystal growth and
morphology,” Chem. Eng. Sci., 56(7), 2245-2253 (2001)
29. N. Rasenack, and B. W. Muller, “Crystal habit and tableting behavior,” Int. J.
Pharm., 244(1-2), 45-57 (2002)
30. D. Gao, and J. H. Rytting, “Use of solution calorimetry to determine the extent of
crystallinity of drugs and excipients,” Int. J. Pharm., 151(2), 183-192 (1997)
31. Y. Kong, and J. N. Hay, “The enthalpy of fusion and degree of crystallinity of
polymers as measured by DSC,” Eur. Polym. J., 39(8), 1721-1727 (2003)
32. F. Giordano1, A. Rossi1, R. Bettini1, A. Savioli1, A. Gazzaniga, and Cs. Novák,
“Thermal behavior of paracetamol-polymeric excipients mixtures,” J. Therm.
Anal. Calor., 68(2), 575-590 (2002)
33. M. Garcia, G. Vliet, M. G. J. ten Cate, F. Chavez, B. Norder, B. Kooi, W. E. van
Zyl, H. Verweij, and H. A. Blank “Large-scale extrusion processing and
characterization of hybrid nylon-6/SiO2 nanocomposites,” Polym. Adv. Technol.,
15(4), 164-172 (2004)
34. A. A. Lacey, D. M. PRICE, and M. Reading, “Theory and practice of modulated
temperature differential scanning calorimetry,” Annu. Rev. Phys. Chem., 47(1),
243-282 (1996)
35. P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar technology, 1st ed., (Technical Research Director West Indies Sugar Corporation,
New York, USA, 1965), pp24-25
36. P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar
technology, 1st ed., (Technical Research Director West Indies Sugar Corporation:
New York, USA, 1965), pp1-8
37. P. Fryer, and K. Pinschower, “The materials science of chocolate,” MRS Bull.,
25(12), 25-29 (2000)
38. A. Saleki-Gerhardt, and G. Zografi, “Non-isothermail crystallization of sucrose
from the amorphous state,” Pharm. Res., 11(8), 1166-1173 (1994)
39. M. S. Jeffery, “Key functional properties of sucrose in chocolate and sugar
confectionery,” Food Tech., 47(1-3), 141-144 (1993)
40. A. Awad, and A. C. Chen, “A new generation of sucrose products made by
cocrystallization,” Food Tech., 47(1-3), 146-148 (1993)
41. S. V. Shah, and Y. M. Chakradeo, “A note of the melting point of cane sugar,”
Current Sci.,4, p652 (1936)
42. J. C. P. Chen, “The crystallization of sugar,” Chapter 10 of Cane sugar handbook
11th ed, (International Sugar Consultant, New York, USA, 1965), pp276-343
43. M. Okuno, S. Kishihara, M. Otsuka, S. Fujill, and K. Kawasaki, “Variability of
melting behavior of commercial granulated sugar measured by differential
scanning calorimetry,” Int. Sugar. J., 105(1249), 29-35 (2003)
44. M. Hurtta, I. Pitkanen, and J. Knuutinen, “Melting behaviour of D-sucrose,
D-glucose and D-fructose,” Carbo. Res., 339(13), 2267–2273 (2004)
45. S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea, and A. P. E.
Maulny, “DSC study of sucrose melting,” Carbo. Res., 341(15),
2591–2599(2006)
46. D. J. C. Constable, C. Jimenez-Gonzalez, and R. K. Henderson, “Perspective on
solvent use in the pharmaceutical industry,” Org. Process Res. Dev., 11(1),
133-137 (2007)
47. P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O, Sullivan, and D. O, Grady,
“A Review of the use of process analytical technology for the understanding and
optimization of production batch crystallization processes,” Org. Process Res.
Dev., 9(3), 348-355 (2005)
48. P. Honig, “Physical properties of sucrose ,” Chapter 2 of Principle of sugar technology 1st ed, (Technical Research Director West Indies Sugar Corporation,
USA, New York, 1965), pp21-22
49. K. Kawakami, K. Miyoshi, N. Tamura, T. Yamaguchi, and Y. Ida,
“Crystallization of sucrose glass under ambient conditions: evaluation of
crystallization rate and unusual melting behavior of resultant crystals,” J. Pharm.,
95(6), 1354-1363 (2006)
50. H. Gloria, and D. Sievert, “Changes in the physical state of sucrose during dark
chocolate processing,” J.Agric. Food Chem., 49(5), 2443-2436 (2001)
51. G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential
scanning calorimetry and thermogravimetric analysis to characterize the thermal
degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric.
Food Chem., 44(10), 3319-3325 (1996)
52. R. Jantas, and B. Delczyk, “Preparation characterisation and antibacterical
properties of sucrose-1-naphtylacetic acid adduct,” Fibres ﹠Textiles in Eastem
Europe., 13(1), 60-63 (2005)
53. N. B. Colthup, L. H. Daly, and S. E. Wiberley, “Introduction to infrared and
ramam spectroscopy,” 3rd ed, New York, USA, 1991,pp335-336
54. M. Darder, and E. Ruiz-Hitzky, “Caramel-clay nanocomposites,” J. Mater.
Chem., 15(9), 3913-3918 (2005)
55. J. M. E. Bunyan, N. Shankland, and D. B. Sheen, “Solvent effect on the
morphology of ibuprofen,” Particle Design via Crystallization AIChE Symp.
Series, 87(284), 44-57 (1991)
56. A. F. M. Barton, “Chapter 2 in handbook of Solubility Parameters and Other
Cohesion Parameter”, 2nd ed, CRC Press, USA, 1991, pp.69-149
57. J. W. Mullin, “Solution and solubility,” Chapter 3 of Crystallization, 3rd ed,
(Butterworth-Heinemann, London, Great Britain, 1992), pp.93-94
Chapter 4
1. D. Giron, “Thermal analysis and calorimetric methods in the characterisation of
polymorphs and solvates,” Thermochem. Acta, 248(2), l-59 (1995)
2. E.L. P. Lee, A.O. Perez, and I. F. Tapia, “Sugar (sucrose) holograms,” Opt.
Mater., 26(1), 5-10 (2004)
3. P. Honig, “Physical properties of sucrose,” Chapter 2 of Principle of sugar
technology, (Technical Research Director West Indies Sugar Corporation, 1st Ed.,
New York, 1965), pp24-25
4. B.I.M. Grimsey, and T. M. Herrington, “The formation of inclusions in sucrose
crystals,” Int. Sugar J., 96(1152), 504-514 (1994)
5. G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential
scanning calorimetry and thermogravimetric analysis to characterize the thermal
degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric.
Food Chem., 44(10), 3319-3325 (1996)
6. S. A. Margolis, “Amperometric measurement of moisture in transformer oil
using Karl Fischer reagents,” Anal. Chem., 67(23), 4239-4246 (1995)
7. N. Blagden, R. J. Davey, H. F. Lieberman, L. William, R. Payne, R. Roberts, R.
Rowe, and R. Docherty, “Crystal chemistry and solvent effects in polymorphic
systems sulfathiazole,” J. Chem. Soc., Faraday Trans., 94(8), 1035-1044 (1998)
8. M. Lahav, and L. Leiserowitz, “The effect of solvent on crystal growth and
morphology,” Chem. Eng. Sci., 56(7), 2245-2253 (2001)
9. M. Okuno, S. Kishihara, M. Otsuka, S. Fujill, and K. Kawasaki, “Variability of
melting behavior of commercial granulated sugar measured by differential
scanning calorimetry,” Int. S. J., 105(1249), 29-35 (2003)
10. M. Hurtta, I. Pitkanen, and J. Knuutinen, “Melting behaviour of D-sucrose,
D-glucose and D-fructose,” Carbo. Res., 339(13), 2267–2273 (2004)
11. S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea, and A. P. E.
Maulny, “DSC study of sucrose melting,” Carbo. Res., 341(15), 2591–2599
(2006)
12. M. L. P. Leitao, J.Canotilho, M. S. C.Cruz, J. C. Pereira, A.T. Sousa, and J. S.
Redinha, “Study of polymorphism from DSC melting curves,” J. Therm. Anal.
Calorim., 68(2), 397-412 (2002)
13. C. McGregor, M. H. Saunders, G. Buckton, and R. D. Saklatvala, “The use of
high-speed differential scanning calorimetry (Hyper-DSCTM) to study the
thermal properties of carbamazepine polymorphs,” Thermochim. Act., 417(2),
231–237 (2004)
14. R. Hilfiker, “Characterization of polymorphic systems using thermal analysis,”
Chapter 3 of Polymorphism, (In the pharmaceutical industry, 1st Ed., Weinheim,
2006), pp71
15. C. Mao, R. Pinal, and K. R. Morris, “A quantitative model to evaluate solubility
relationship of polymorphs from their thermal properties,” Pharm. Res., 22(7),
1149-1157 (2005)
16. P.T Cardew, and R. J. Davey, “The kinetics of solvent-mediated phase transformation,” Math. Phys. Sci., 398(1815), 415-428 (1985)
17. K. Sato, “Polymorphic transformations in crystal growth,” J. Phys. D Awl. Phys.,
26(8), B77-84 (1993)
18. K. Pack, J. M. B. Evans, and A. S. Myerson, “Determination of solubility of
polymorphs using differential scanning calorimetry,” Cryst. Growth Des., 3(6),
991-995 (2003)
19. S. Mccarthy, and J.Billingsley, “A sensor for the sugar cane harvester topper,”
Sen. Rev., 22(3), 242-246 (2002)
20. H.S. Lu, H. R.Xu, Y.B. Ying, X. P. Fu, H. Y. Yu, and H. Q. Tian, “Application
fourier transform near infrared spectrometer in rapid estimation of soluble solid
content of intact citrus fruits,” J. Z. Univ. Sci. B 7(10), 794-799 (2006)
21. D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in
the presence of chiral impurities,” Cryst. Growth Des., 5(6), 2173-2179 (2005)
22. B. Rodrıguez-Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N.
Rodrıguez-Hornedo, “General principles of pharmaceutical solid polymorphism:
a supramolecular perspective,” Advanced Drug Del Rev., 56(2), 241– 274 (2004)
23. J. W. Mullin, “Crystallization techniques and equipment,” Chapter 7 of
Crystallization, 3rd ed, (Butterworth-Heinemann, London, Great Britain,1992),
pp.288-290
24. S. R. Byrn, P. A. Sutton, B. Tobias, J. Frye, and P. Main, “The crystal structure,
solid-state nmr spectra, and oxygen reactivity of five crystal forms of
prednisolone tert-butylacetate,” J. Am. Chem. Soc., 110(5), 1609-1614 (1988)
25. D.C. Apperley, R. A. Fletton, R. K. Harris, R. W. Lancaster, S. Tavener, and T. L.
Threlfall, “Sulfathiazole polymorphism studied by magnetic-angle spinning
nmr,” J. Pharm. Sci., 88(12), 1275-1280 (1999)
26. U. R. Desai, I. R. Vlahov, A. Pervin, and R. J. Linhardt, “Conformational
analysis of sucrose octasulfate by high resolution nuclear magnetic resonance
spectroscopy,” Carbo. Res., 275(2), 391-401 (1995)
27. N. Y. Park, N. I. Baek. J. Cha, S.B. Lee, J. H. Auhe, and C. S. Park, “Production
of a new sucrose derivative by transglycosylation of recombinant sulfolobus
shibatae b-glycosidase,” Carbo. Res., 340(66), 1089–1096 (2005)
28. T. J. Offerdahl, “Solid-state nuclear magnetic resonance spectroscopy for
analyzing polymorphic drug forms and formulations,” Pharm. Tech., 28, 1-11(2006)
29. L. R. Chen, B. E. Padden, S. R. Vippagunta, E. J. Munson, and D. J. W. Grant,
“Nuclear magnetic resonance and infrared spectroscopic analysis of nedocromil
hydrates,” Pharm. Res., 17(5), 619-624 (2000)
30. S. R. Byrn, G. Gary, R. R. Pfeiffer, and J. Frye, “Analysis of solid-state
carbon-13 nmr spectra of polymorph (benoxaprofen and nabilone ) and
pseudopolymorphs (Cefazolin),” J. Pharm. Sci., 74(5), 565-568 (1985)
31. A. Terol, G. Cassanas, J. Nurit, B. Pauvert, A. Bouassab, J. Rambadu, and P.
Chevallet, “Infrared, raman, and 13C nmr spectra of two crystalline forms of (1R,
3S)-3-(p-Thioanisoyl)-1,2,2-trimethylcyclopentanecarbohylic acid,” J. Pharm.
Sci., 83(10), 1437-1442 (1994)
32. R. Hilfiker, “Solid-state spectroscopy,” Chapter 4 of Polymorphism, (In the
pharmaceutical industry, 1st Ed, Weinheim, 2006), pp82-84
33. B. E. Padden, M. T. Zell, Z. Dong, S. A. Schroeder, D. J. W. Grant, and E.J.
Munson, “Comparison of solid-state 13C nmr spectroscopy and powder x-ray
diffraction for analyzing mixtures of polymorphs of neotame,” Anal. Chem.,
71(16), 3325-3331 (1999)
34. M. Sezlagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard,
M.von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte, and R. Schenker, “ In
situ characterization of polymorphic forms,” J. Therm. Anal. and Calor., 57(1),
23-43 (1999)
35. D. J. Sandman, L. Li, and S. Tripathy, “Conformational polymorphism of Di
(2-naphthyl) ditelluride,” Organomet., 13(1), 348-353 (1994)
36. T. C. Huang, “Automatic x-ray single crystal structure analysis system for small
molecule,” The Rigaku J., 21(2), 43-46 (2004)
37. L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of
polymorphic drugs: an integrated characterization strategy,” PSTT 1(3), 118-127
(1998)
38. P. Honig, “Physical properties of sucrose,” Chapter 2 of Principle of sugar
technology, 1st ed, (Technical Research Director West Indies Sugar Corporation,
USA, New York, 1965), pp21-22
39. M. Darder, and E. Ruiz-Hitzky, “Caramel-clay nanocomposites,” J. Mater.
Chem., 15(9), 3913-3918 (2005)
40. A. L. Cholli, and J. L. Koenig, “Spectroscopic study of the structure of sucrose in
the amorphous the state and in aqueous solution,” Carbo. Res., 147(1-2),1-9
(1986)
41. C. H. Penhoat, A. Imberty, J. N. Roques, V. Michon, J. Mentech, G. Descotes,
and S. Perez, “Conformational behavior of sucrose and its deoxy analogue in
water as determined by nmr and molecular modeling,” J. Am. Chem. SOC.,
11(39), 3720-3727 (1991)
42. P. Chinachooti, and M. P. Steinberg, “Crystallinity of sucrose by x-ray diffraction
as influenced by absorption versus desorption, waxy maize starch content, and
water activity,” J. Food Sci., 51(2), 456-459 (1986)
43. H.Gloria, and D. Sievert, “Changes in the physical state of sucrose during dark
chocolate processing,” J.Agric. Food Chem., 49(5), 2443-2436 (2001)
44. J. C. Hanson, L. C. Sieker, and L. H. Jensen, “Sucrose: x-ray refinement and
comparision with neutron refinement,” Acta. Cryst., B29, 797-808 (1973)
45. R. Hilfiker, “Characterization of polymorphic systems using thermal analysis,”
Chapter 3 of Polymorphism, (In the pharmaceutical industry, 1st Ed., Weinheim,
2006), pp72
Chapter 5
1. J. E. Botzolakis, and L. L. Augsburger, “The role of distintegrants in hard-gelatin
capsules,” J. Pharm. Pharmacol., 36(2), 77-84 (1984)
2. C. R. Chen, Y. H. Lin, S. L. Cho, S. H. Yen, and H. L. S. Wu, “ Investigation of
the dissolution difference acidic and neutral media of acetaminophen tables
containing a super distintegrant and a soluble excipient,” Chem. Pharm. Bull.,
45(3), 509-512 (1997)
3. A. A. Joshi, and X. Duriez, “ Added functionality excipients: An answer to
challenging formulations,” Pharm. Tech., 12, 12-19 (2004)
4. C. R. Chen, S. L. Cho, Y. H. Lin, S. H. Yen, and H. L. S. Wu, “ Investigation of
the dissolution difference acidic and neutral media of acetaminophen tables
containing a super distintegrant and a soluble excipient,” Chem. Pharm. Bull.,
46(3), 478-481 (1998)
5. G. K. bolhuis, and Z. T. Chowhan, “ Materials of direct compaction,” Pharm.
Powder Compaction Tech., 71(14), 419-500 (1996)
6. M. C. Gohel, and B. S. D. Marg, “A review of co-processed directly
compressible excipients,” J. Pharm. Pharmaceut. Sci., 8(1), 76-93 (2005)
7. M. A. Goshko, W. O. Pipes, and R. R. Christian, “Possible confusion between
enterobacter agglomerans and Escherichia coli,” Pharm. Tech., 8, 32-39 (1984)
8. S. A. Sangekar, M. Sarli, and P. R. Sheth, “Effect of moisture on physical
characteristics of tables prepared from direct compression excipients,” J. Pharm. Sci., 61(6), 939-944 (1972)
9. J. W. D. Ross, “Modification of the crystalline structure of sorbitol and its effect
tableting characteristics,” Pharm. Tech., 8, 42-53 (1984)
10. M. S. Gordon, V. S. Rudraraju, K. Dani, and Z. T. Chowhan, “Effect of the mode
of super distintegrant incorporation on dissolution in wet granulated tables,” J.
Pharm. Sci., 82(2), 220-224 (1993)
11. M. S. Gorden, V. S. Rudraraju, J. K. Rhie, and Z. T. Chowhan, “The effect of
aging on the dissolution of wet granulated tables containing super disintegrants,”
Int. J. Pharm., 97(1-3), 119-131 (1993)
12. A. Wade, and P. J. Weller, “Sucrose,” Handbook of pharmaceutical excipients,
2nd ed, (American Pharmaceutical Association, Washington, USA, 1994),
pp.500-505
13. P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar
technology ,1st ed, Technical Research Director West Indies Sugar Corporation,
New York, USA, 1965, pp24-25
14. P. Honig, “Chemical properties of sucrose,” Chapter 1 of Principle of sugar
technology , 1st ed, Technical Research Director West Indies Sugar Corporation,
New York, USA, 1965, pp22
15. J. McMurry, “Biomolecules: Carbohydrates,” Chapter 25 of Organic Chemistry,
(Thomson Learning, Inc., Belmont, USA, 2004), p. 969
16. M. Sugimoto, T. Maejima, S. Narisawa, K. Matsubara, and H. Yoshino, “Factors
affecting the characteristics of rapidly disintegrating tables in the mouth prepared
by crystalline transition of amorphous sucrose,” Int. J. Pharm., 296(1-2), 64-72
(2005)
17. A. Wade, and P. J. Weller, “Sucrose,” Handbook of pharmaceutical excipients,
2nd ed, American Pharmaceutical Association, Washington, USA, 1994,
pp.502-503
18. S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of Metastable Forms of
Acetaminophen Studied by Thermal Fourier Transform Infrared(FT-IR)
Microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002)
19. B. A. Hendriksen, and D. J. W. Grant, “The effect of structurally related
substances on the nucleation kinetics of paracetamol (acetaminophen),” J. Cry.
Grow., 156(3), 252-260 (1995)
20. R. I. Ristic, S. Finnie, D. B. Sheen, and J. n. Sherwood, “Macro-and
micromorphology of monoclinic paracetamol grown from pure aqueous
solution,” J. Phys. Chem. B, 105(38), 9057-9066 (2001)
21. B. Albertini, C. Cavallari, N. Passerini, D. Voinovich, M. L. G. Rodriguez, L. Magarotto, and L. Rodriguez, “Characterization and test-masking evaluation of
acetaminophen granulates: comparison between different preparation methods in
a high-shear mixer,” Europ. J. Pharm. Sci., 21(2-3), 295-303 (2004)
22. D. J. V. Drooge, W. L. J. Hinrichs, and H. W. Frijlink, “Anomalus dissolution
behavior of tables prepared from sugar glass-based solid dispersions,” J.
Controlled Release., 97(3), 441-452 (2004)
23. E. B.Vadas, G. R. B. Down, and R. A. Miller, “Effect compression force on tables
containing cellulosic disintegrators Ⅰ: dimensionless disintegration values,” J.
Pharm. Sci., 73(6), 781-783 (1984)
24. J. E. Botzolakis, and L. L. Augsburger, “Disintegrating agent in hard gelatin
capsules. Part Ⅱ: swelling efficiency,” Drug Dev. Ind. Pharm., 14(9), 1235-1248
(1998)
25. S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T.
Lee, F. Nikfar, M. Davidovich, S. Srivastava and S. Kiang, “Control of the
particle properties of a drug substance by crystallizatioin engineering and the
effect on drug Product Formulatioin,” Org. Process Res. Dev., 9(6), 894-901
(2005)
26. M. Charoenchaitrakool, F. Dehghani, and N. R. Foster, “Micronization by rapid
expansioin of supercritical solutions to enhance the dissolution rates of poorly
water-soluble pharmaceuticals,” Ind. Eng. Chem. Res., 39(12), 4794-4802 (2000)
27. A. P. Tinke, K. Vanhoutte, R. Ed Maesschalck, S. Verheyen, and H. De Winter,
“A new approach in the prediction of the dissolution behavior of suspended
particles by means of their particle size distribution,” J. Pharm. Bio. Ana., 39(5),
900-907 (2005)
28. J. Hecq, M. Dellers, D. Fanara, H. Vranckx, and K. Amighi, “Prepareation and
characterization of nanocrystals for solubility and dissolution rate enhancement
of nifedipine,” Int. J. Pharm., 299(1-2), 167-177 (2005)
29. G. G. Liversidge, and K. C. Cundy, “Particle size reduction for improvement of
oral bioavailability of hydrophobic drugs: I. absolute oral bioavailability of
nanocrystalline danazol in beagle dogs,” Int. J. Pharm., 125(1), 91-97 (1995)
30. B. Y. Shekunov, P. Chattopadhyay, J. Seitzinger, and R. Huff, “Nanoparticles of
poorly water-soluble drugs prepared by supercritical fluid extraction of
emulsions,” Pharm. Res., 23(1), 196-204 (2006)
31. M. Mosharraf, and C. Nyström, “The effect of particle size and shape on the
surface specific dissolution rate of microsized practically insoluble drugs,” Int. J.
Pharm., 122(1-2), 35-47 (1995)
32. W. J. Genck, “Optimizing crystallizer scaleup: understand the impact of mixing
on crystallization dynamics and determine the optimum conditions for scale-up,”
AIChE, 99(6), 36-44 (2003)
33. T. Lee, and J. Lee, “Particle attrition by particle-surface friction in dryers,”
Pharm. Tech. North America, 27(5), 64-72 (2003)
34. S. A. Altaf, S. W. Hoag, and J. W. Ayres, “Bead compacts II evaluation of rapidly
disintegrating nonsegregating compressed bead formulations,” Drug Dev. Ind.
Pharm., 25(5), 635-642 (1999)
35. N. K. Ebube, A. H. Hikal, C. M. Wyandt, D. C. Beer, L. G. Miller, and A. B.
Jones “Effect of drug formulation and process variables on granulation and
compaction characteristics of heterogeneous matrices. Part 1: HPMC and HPC
systems,” Int. J. Pharm., 156(1), 49-57 (1997)
36. M. J. Habib, “Pharmaceutical solid dispersion technology,” Technomic
Publishing Company, Inc., Pennsylvania, USA, 2001, pp. 12
指導教授 李度(Tu-Lee) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明