博碩士論文 943206004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.215.161.19
姓名 鄭禹祥(Yu-xiang Zheng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 COD、SS及流量即時自動監測系統之發展與建立
(Development of an automatic real-time monitoring system for COD, SS and flow)
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 面對人類永續發展與水資源永續利用之需求,透過廢水處理系統的自動化與最佳化來提升廢水處理之穩定性、效率及效益,已成為必然的趨勢。因此,研發各種可線上即時自動監測水質與水量的技術與設備以提升處水處理之成效,儼然成為目前研究重點之一。有鑑於傳統量測設備及水質分析實驗無法即時、完整且有效提供擬定控制策略或水質異常時所需之資料與資訊,是故,以光學方法建立即時廢水水質與水量之監測方法與系統,其具有快速量測、不需外加藥劑、建置成本低等優點,可有效解決及改善傳統量測或實驗分析所面臨之問題。
本研究利用光學頻譜分析方法,針對廢水水質之COD與SS,以線上分光光度計掃描廢水之吸收光譜,以多成分演算法依序定性與定量廢水成分;另外結合數位影像分析方法,利用測邊原理以擷取出水位影像像素,再以三角函數及回歸模式方法求得實際水位與流量,最後整合成一套水質與水量即時自動監測系統,並同時以實驗室與實廠監測做驗證。於水質量測方面,對於相同標準品之量測,其量測之標準偏差百分比都小於實驗水質分析方法,另外對於實廠各處理單元或變動性較大之長時間水質量測,其與實驗水質分析之相對誤差大致在於20%與15%以內,於放流水相對差值大致在5mg/L以內;而於流量量測方面,其實驗室量測成果其相對誤差亦在2%以內。結果顯示,利用光學方法建立COD、SS及流量自動即時監測系統,已具有一定程度之穩定性及準確性,並可提供實廠即時資料與資訊做為廢水處理及異常警報之用,以提升自動化處理成效。
摘要(英) To confront the requirement of the sustainable development of human beings and the sustainable use of water resource, it becomes the imperious current that can improve the stability, efficiency and effectiveness of wastewater treatment through the automation and optimization of wastewater treatment systems. For this reason, it is important to research and develop various kinds of technology and equipment of an automatic real-time water quality and water quantity monitoring system. Respecting the deficiencies of the traditional measurement equipments and experiment analysis that can not offer the necessary information immediately and completely when the control strategy of wastewater treatment has to be made or the situation of unusual water quality has happened, the development of an automatic water quality and quantity monitoring system with the optics method that have fast quantity examine, cost low construction, etc., is efficacious to solve and improve the problem caused by the traditional method.
This research is mainly to utilizes spectrum analysis and digital image analysis to develop an automatic real-time water quality and quantity monitoring system which can apply to experiments and wastewater treatment. There are two parts to develop to this research, one is the multiple components algorithm for a qualitative and quantitative analysis method of COD and SS, and the anther is the trigonometric function method and the regression model method for flow and water level. The results indicate that the stability and the accuracy of the monitoring system is superior to the experiment analysis for water quality measurement, and each of the relative percent difference of COD and SS between the monitoring system and the experiment analysis in many place of wastewater treatment is mostly less than 20% and 15%. Moreover, the relative percent difference of flow between the monitoring system and pilot system is less than 2%.
Altogether, Utilizing spectrum analysis and digital image analysis to develop an automatic real-time water quality and quantity monitoring system for COD, SS and flow is stable and accurate respectably. It can not only offer real-time information for wastewater treatment, but also announces the operators that the water quality is unusual in order to improve the efficiency and effectiveness of wastewater treatment.
關鍵字(中) ★ 自動監測
★ 光學頻譜分析
★ 數位影像分析
關鍵字(英) ★ Digital image analysis
★ Spectrum analysis
★ Automatic monitor
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 水質與水量量測設備應用現況 3
2.1.1 目前水質與水量測原理與方法 3
2.1.2 市售水質與水量量測設備比較 7
2.2 光學頻譜分析原理與方法 9
2.2.1 光學頻譜種類與應用 9
2.2.2 吸收光譜分析原理 12
2.2.3 吸收光譜定性及定量方法 15
2.2.4 紫外光及可見光譜於水質量測之應用 16
2.3 數位影像分析原理與方法 18
2.3.1 數位影像處理技術 18
2.3.2 數位影像水量分析原理 20
2.3.3 數位影像分析之應用 22
第三章 研究方法 24
3.1 研究流程與內容 24
3.2 水質量測方法之建立 26
3.2.1 水質光譜特性資料庫建置 27
3.2.2 多成分定性與定量分析演算法建立 28
3.3 水量量測方法之建立 39
3.3.1 三角函數量測法建立 39
3.3.2 回歸模式量測法建立 41
3.4 監測系統設計與建置 43
3.4.1 監測系統架構 43
3.4.2 水質量測系統建置 45
3.4.3 水質與水量監控程式發展 49
3.4.5 資料處理系統建置 57
3.5 系統測試與驗證 58
3.5.1 實驗室系統測試與驗證 58
3.5.2 實廠系統測試與驗證 59
第四章 結果與討論 62
4.1 監測系統建置成果 62
4.1.1 量測裝置建置成果 62
4.1.2 監控程式發展結果 64
4.2 水質監測系統測試結果 75
4.2.1 分光光度計穩定性分析 75
4.2.2 分光光源穩定性分析 77
4.2.3 分光水樣量測組成穩定性分析 79
4.2.4 小結 83
4.3 實驗室水質監測與驗證 83
4.3.1 單一濃度標準品量測穩定性分析 83
4.3.2 不同濃度標準品量測準確性分析 85
4.3.3 系統量測與實驗水質分析比對 87
4.3.4 小結 88
4.4 實驗室水量監測與驗證 88
4.4.1 三角函數量測法建立結果 88
4.4.2 迴歸模式量測法建立結果 103
4.4.3 實驗室流量監測結果 110
4.4.4 小結 111
4.5 實廠水質監測結果 112
4.5.1 實廠各測點廢水監測結果 112
4.5.2 長時間水質監測結果 117
4.5.3 變動水質監測結果 119
4.5.4 小結 120
4.6 實廠水量監測結果 121
第五章 結論與建議 123
5.1 結論 123
5.2 建議 124
參考文獻 126
參考文獻 Byrne, L., J. Barker and T. Pennarun, “Digital imaging as a detector for generic analytical measurements,” Trends in Analytical Chemistry, Vol. 19, Issue: 8, August, pp. 517-522, (2000).
Brookman, S.K.E, “Estimation of Biochemical Oxygen Demand in Slurry and Effluents Using Ultra-violet Spectrophotometry,” Water Research, Vol. 31, No. 2, pp. 372-374, (1997).
Dobbs, R. A., R. H. Wise and R. B. Dean, “The Use of Ultraviolet Absorbance for Monitoring the Total Organic Carbon Content of Water and Wastewater,” Water Research, Vol. 6, pp. 1173-1180, (1972).
Douglas A. , F. James, and A. Timothy, “Principles of instrumental analysis,” Instrumental analysis, (1998).
El Khorassani, H., P. Trebuchon, H. Bitar and O. Thomas, “A Simple UV Spectrophotometer Procedure for the Survey of Industrial Sewage System,” Water Science and Technology, Vol. 39, No. 10-11, pp. 77-82, (1999).
Fecht, I. and M. Johnson, “Non-contact scattering-independent water absorption measurement using a falling stream and integrating sphere,” Measurement Science and Technology, Vol. 10, pp. 612-618, (1999).
Foster, P. and A. W. Morris, “The Use of Ultra-Violet Absorption Measurements for the Estimation of Organic Pollution in Inshore Sea Waters,” Water Research Bergamon Press, Vol. 5, pp. 19-27, (1971).
Holst, Gerald C., “CCD arrays, cameras, and displays,” second edition, JCD Publishing, (1998).
Johnson, M., “Remote turbidity measurement with a laser reflectometer,” Water Science and Technology, Vol. 37, Issue: 12, pp. 255-261, (1998).
Kang, H. R., “Color technology for electronic image device,” SPIE, (1997).
Matshé, N. and K. Stumwöhrer, “UV Absorption as Control Parameter for Biological Treatment plants,” Water Science and Technology, Vol. 33, No. 12, pp. 211-218, (1996).
Mrkva, M., “Automatic U.V.-Control System for Relative Evaluation of Organic Water Pollution,” Water Res. Vol. 9, pp. 587-589, (1975).
Roig, B. and O. Thomas, “UV monitoring of sugars during wine making,” Carbohydrate Research, Vol. 338, pp. 79–83 (2003).
Roig, B., C. Gonzalez and O. Thomas, “Monitoring of phenol photodegradation by ultraviolet spectroscopy,” Spectrochimica Acta Part A, Vol. 59, pp. 303-307, (2003).
Suzuki, N. and R. Kuroda, “Direct Simultaneous Determination of Nitrate and Nitrite by Ultraviolet Second-derivative Spectrophotometry,” Analyst, Vol. 112, pp. 1077-1079, (1987).
Takagi, Y.; A. Tsujikawa, M. Takato, T. Saito and M. Kaida, “Development of a noncontact liquid level measuring system using image processing,” Water Science and Technology, Vol. 37, Issue: 12, pp. 381-387, (1998).
Thomas, O., F. Théraulaz, C. Angel and S. Suryani, “Advanced UV Examination of Wastewater,” Environmental Technology, Vol. 17, pp. 251-261, (1996).
Vaillant, S., M. F. Pouet and O. Thomas, “Basic Handling of UV for Urban Water Quality Monitoring,” Urban Water, Vol. 4, pp. 273-281, (2002).
Wang, G. S. and S. T. Hsieh, “Monitoring Natural Organic Matter in Water with Scanning Spectrophotometer,” Environment International, Vol. 26, pp. 205-212, (2001).
Williams, D. H. and I. Fleming, “Spectroscopic Methods in Organic Chemistry,”(1972).
王明光、王敏昭,「實用儀器分析」,合記書局,2004。
王祥洲,「廢水處理系統光學監測系統之發展-非接觸式廢水流量與色度監測技術之建立」,國立中央大學環境工程研究所碩士論文,2004。
李明靜,「河川表面流速與流量非接觸式量測方法之發展及應用」,國立成功大學水利及海洋工程學系碩博士論文,2003。
林宸生、陳德請,「近代光電工程導論」,全華科技圖書公司,2000。
林敬二譯,「儀器分析」,美亞書版股份有限公司,1999。
廖憶華,「以光學頻譜分析定性及定量廢水水質特性之研究」,國立中央大學環境工程研究所碩士論文,2006。
鄭振東譯,「流量計的正確使用方法」,中國生產力中心叢書,1992。
鄭國裕,「電腦影像處理」,藝風堂出版社,1996。
環境保護署,環境檢測方法-硝酸鹽氮定方法。
指導教授 廖述良(Shu-Liang Liaw) 審核日期 2007-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明