博碩士論文 943206012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:34.204.183.113
姓名 范振國(Zhen-Guo Fan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以磁種凝絮法處理暴雨期高濁度原水
(Magnetic Seeding Aggregation of High Turbidity Source Water during Storm Season)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於暴雨期間強烈颱風發生的頻率節節攀升,台灣地區的山勢陡峭、河短湍急,集水區的水土保持不當,加上九二一大地震對地貌造成的傷害,每逢暴雨侵襲,鬆動的表土或是裸露岩層中的細泥便藉著河水的沖刷被帶入水庫當中,造成原水濁度攀升甚至達數十萬NTU,也對水庫的造成嚴重的淤積。如此高濁度的原水常造成淨水場處理程序停擺,避免淨水單元遭受更嚴重的損壞,對於民生及工業用水影響至鉅。
磁種凝絮技術已經被廣泛的運用在廢水中污染物的去除,如含有重金屬、有機物、硝酸鹽、砷等廢水,皆具有相當好的去除效果,藉由外加磁場更可有效提升去除效率。本研究利用磁種凝絮技術將奈米級磁性顆粒(F3O4)加入高濁度原水中,藉由顆粒表面電性相異所產生的吸引力,形成帶磁性的凝絮物,再以外加磁場提高凝絮物的沉澱效果,並結合傳統混凝程序,降低磁性顆粒的添加量。
實驗結果顯示原水的殘餘濁度會隨著奈米顆粒之加藥量增加及原水pH值的降低而提升,且磁混後原水pH具有穩定維持在中性的作用,水中有機物亦可經由磁混而被部分去除,且外加磁場強度對沉降速率有明顯的提升,可將沉澱時間從30分鐘縮短到3分鐘即可達成相同去除效果。將磁混與傳統混凝程序結合可有效減少奈米顆粒及混凝劑的加藥量,分別達到原最佳加藥量的1/3及1/10,且對原水的鹼度消耗亦可明顯減少,最後磁性顆粒的回收率及再用時的濁度去除率也分別高達95%及90%以上。
摘要(英) In recent years, the frequency of strong typhoon increases and causes the turbidity of source water even exceeds 100,000 NTU during storm season. The upper limit of turbidity for the potable water treatment is about 2,000 NTU, or the water treatment plant will shut down to protect the purification units. The water supply system is broken down during this period.
Magnetic seeding aggregation (MSA) has been used to treat contaminants in wastewater, such as ferrihydrite, arsenic, organic matters, and nitrogen compounds. In this research, removal of turbidity using magnetite nanoparticle were studied. The raw clay attracts to magnetite by the opposite sign of charge on the surface of two types of particle. The external magnetic field was applied to remove the magnetic aggregates. Then the magnetic seeding aggregation was combined with traditional coagulation process to decrease the dosage of magnetite and PACl.
The results showed that the final residual turbidity decreased with increasing dosage of magnetite and decreasing pH of raw water. Some of the organic matters were also removed after magnetic seeding aggregation. The settling velocity of the magnetic aggregates increased obviously after the external magnetic field was applied. Combining the MSA with traditional coagulation process, the dosage of magnetite and PACl are decreased to 1/3 and 1/10 of the optimal dosage, respectively. The recovery ratio of magnetite and the removal efficiency of recovered magnetite are over 95% and 90%, respectively.
關鍵字(中) ★ 多元氯化鋁
★ 奈米磁性顆粒
★ 高濁度原水
★ 磁種凝絮
關鍵字(英) ★ magnetic seeding aggregation
★ PACl
★ magnetite
★ high turbidity water
論文目次 CHAPTER I INTRODUCTION…………………………………………………….1
1.1 General Background Information………………………1
1.2 Objective………………………………………………………………2
CHAPTER II BACKGROUND……………………………………………………3
2.1 Causes of High Turbidity Water………………………………………3
2.1.1 Climate change…………………………………………… 3
2.1.2 The topography……………………………………………..4
2.1.3 The geology…………………………………………………4
2.2 Current Processes to Treat High Turbidity Water……………………...5
2.2.1 Relationship between different kind of coagulation and rapid
mixing processes……………………………………………5
2.2.2 Using Degrémont to design and build potable water
treatment……………………………………………………6
2.2.3 Improvement of coagulation process…………………….…7
2.2.4 Using polymers as flocculation aid and application of
improving treatment process………………………………8
2.3 Theory of Colloid Aggregation………………………………………..8
2.3.1 Properties of colloidal particle.……………………………..8
2.3.2 Electrical double layer and zeta potential…………………10
2.3.3 Coagulation and destabilization mechanism………………15
2.3.4 Destabilization mechanism……………………...…………17
2.3.5 Flocculation………………………………………………19
2.4 Magnetic Seeding Aggregation and Separation……………………21
2.4.1 Introduction of magnetic nanoparticle……………………21
2.4.2 Principle of magnetic seeding aggregation………………22
2.4.3 Application of magnetic seeding aggregation……………23
CAHAPTER III MATERIALS AND METHODS…………………………………28
3.1 Materials……………………………………………………………28
3.1.1 Preparation of magnetite…………………………………28
3.1.2 Preparation of high turbidity water…………………..……30
3.1.3 Preparation of different concentration of TOC in high
turbidity water………………..……………………………30
3.2 Method………………………………………………………………31
3.2.1 Characterization of magnetite and turbid particles………32
3.2.2 Magnetic seeding aggregation of high turbidity water……32
3.2.3 Coagulation process used of PACl………………………38
CHAPTER IV RESULTS AND DISCUSSION……………………………………41
4.1 Characteristics of Turbid and Nano Magnetite Particles……………41
4.1.1 Particle size distributions and zeta potentials of turbid and
nano magnetite particles…………………………………41
4.1.2 Morphologies of turbid and nano magnetite particles……43
4.1.3 Compositions of turbid and nano magnetite particles…..…45
4.2 Magnetic Seeding Aggregation of High Turbidity Water…….....……47
4.2.1 Effects of dosage of magnetite on MSA………………….47
4.2.2 Effects of solution pH on MSA……………………………50
4.2.3 Effects of external magnetic field strength during
sedimentation on MSA………….…………………………54
4.3 Coagulation of High Turbidity Water Using PACl…………………56
4.3.1 Removal of Turbidity by PACl……………………………56
4.3.2 Combined treatment of high turbidity water using
PACl/magnetite……………………………………………58
4.4 Influence of TOC in Magnetic Seeding Aggregation…………...……62
4.5 Recovery of Magnetite from the Sludge of MSA……………………65
CHAPTER V CONCLUSION……………………………………………………68
REFERENCE………………………………………………………………………70
參考文獻 1. Central Weather Bureau. Website: http://www.cwb.gov.tw/
2. Shih, W. K., and Chiang, C. L., “Treatment of High Turbidity Water,” Proceeding 4th International Workshop on Drinking Water Quality Management and Treatment Technology, March 4-5, 1998, Taiwan, R.O.C.
3. 翁韻雅,「以高分子凝聚劑處理高濁度原水之研究」,碩士論文,成功大學環境工程研究所,台南(2003)。
4. Chou, S. S., Horng, R. Y., Peng, M. C., Chen, I. J., Pan, J. R., and Huang, C. P., “Pilot Study of Coagulation for the Pretreatment of High Turbidity Water,” The First International Conference on Sustainable Water Environment: Water Resource and Quality Management., November 2-4, 2005, Taiwan, R.O.C.
5. 陳珮紋,「利用Fe3O4磁性顆粒處理化學機械研磨廢水」,碩士論文,中央大學環境工程研究所,中壢(2004)。
6. Chin, C. J. Monica, Chen, P. W., and Wang, L. J., “ Removal of Nanoparticles from CMP Wastewater by Magnetic Seeding Aggregation,” Chemosphere, 63, 1809-1813, (2006).
7. 王立仁,「自磁種凝絮污泥回收再利用奈米磁性顆粒-以化學機械研磨廢水為例」,碩士論文,中央大學環境工程研究所,中壢(2005)。
8. Lai, B. H., Ciou, J. C., and Wang, W., “Problems and Solutions of Turbidity for Shihmen Reservoir in Taiwan during Typhoon Period,” The First International Conference on Sustainable Water Environment: Water Resource and Quality Management, November 2-4, 2005, Taiwan, R.O.C.
9. Yukselen, M. A. and Gregory, J., “The Effect of Rapid Mixing on the Break-up and Re-formation of Flocs,” Journal of Chemical Technology and Biotechnology, 79, 782-788 (2004).
10. Gregory, J. and Rossi L., “Dynamic Testing of Water Treatment Coagulants,” Water Science and Technology: Water Supply, 1, 65-72 (2001).
11. Gestin, L., “High Turbidity Sustainable Management in Potable Water Production,” The First International Conference on Sustainable Water Environment: Water Resource and Quality Management, November 2-4, 2005, Taiwan, R.O.C.
12. Manahan, S. E., Environmental Chemistry, Lewis (1996).
13. Benefield, L. D., Judkins, J. F., and Weand, B. L., “Process Chemistry for Water and Wastewater Treatment,” Prentice Hall (1982).
14. 張有義、郭蘭生編譯,膠體及介面化學入門,高立出版社(1997)。
15. Gouy, C., “Suy la Constitution de la Charge Electrique ala Surface Dum Electrolyte,” Annals of Physics, (Pairs) Serie 4, 9, 457-468 (1910).
16. Chapman, D. L., “A Contribution to the Theory of Electrocapillarity,” Philosophical Magazine, 25, 475-481 (1910).
17. Stern, O., “Zur Theorie der, Elektrolytischem Doppelschicht,” Acta Electrochemistry, 30, 508 (1924).
18. 楊萬發譯,水及廢水處理化學,茂昌圖書有限公司(1987)。
19. 蔡騰龍著,工業水處理,正文書局有限公司(2001)。
20. 王敏智,「不同粒徑膠體粒子的膠凝沈降實驗」,碩士論文,東海大學化學工程研究所,台中(2002)。
21. Ganz, Y., “Water Treatment,” American Water Works Association, 1, (2003).
22. 陳永平,電磁學,全華科技圖書股份有限公司(2003)。
23. Karapinar, N., “Magnetic Separation of Ferrihydrite from Wastewater by Magnetic Seeding and High-Gradient Magnetic Separation,” International Journal of Mineral Processing, 71, 45-54 (2003).
24. Chiba, A., Okada, H., Tada, T., Kudo, H., Nakazawa, H., Mitsuhashi, K., Ohara, T., and Wada H., “Removal of Arsenic From Geothermal Water by High Gradient Magnetic Separation,” IEEE Transactions on applied superconductivity, 12, (2002).
25. Sakai, Y., Miama, T., and Takahashi, F., “Simultaneous Removal of Organic and Nitrogen Compounds in Intermittently Aerated Activated Sludge Process Using Magnetic Separation,” Water Research, 31, 2113-2116 (1997).
26. Liao, M. H., Wu, K. Y., and Chen D. H., “Fast Removal of Basic Dyes by a Novel Magnetic Nano-Adsorbent,” Chemistry Letters, 32, 488-489 (2003).
27. Blesing, N. V., Bolto, B. A., Ford, D. L., Mcneill, R., Marcfpherson, A. S., Melbourne, J. D., Mort, F., Siudak, R., Swinton, E. A., Weiss, D. E. and Willis, D., “Ion Exchange in the Process Industries,” Social Chemical Industry, London 371 (1970).
28. Bolto, B. A., Dixon, D. R., Priestley, A. J. and Swinton, E. A., Program of Water Technology, 9, 833 (1977).
29. Chun, C. L. and Park, J. W. “Oil Spill Remediation Using Magnetic Separation,” Journal of Environmental Engineering, 443-449 (2001).
30. Aiken, H. R., Wershaw, R. L., MacCarthy, P., McKnight, D. M., “Humic Substances in Soil, Sediment and Water,” Wiley, New York (1985).
31. Illés, E. and Tombácz, e., “The Role of Variable Surface Charge and Surface Complexation in the Adsorption of Humic Acid on Magnetite,” Colloids and Surfaces A: Physicochemical Engineering Aspects 230, 99–109 (2004).
32. Vermeer, A. W. P., van Riemsdijk, W. H. and Koopal, L. K., “Adsorption of Humic Acid to Mineral Particles. 1. Specific and Electrostatic Interactions,” Langmuir, 14, 2810-2819 (1998).
33. Dixon, D. R. and Kolarik, L. O., “Magnetic Microparticles for Treatment of Natural Waters and Wastewaters,” Studies in Environmental Science, 23, 179-191 (1984).
34. Weiss, D. E., Kolaric, L. O., Priestley, A. J. and Anderson, N. J., “Water Clarification,” United States Patent PAT. NO. 4279756, (1981).
35. Khalafalla S. E. and Reimers, G. W., “Preparation of Dilution Stable Aqueous Magnetic Fluid,” IEEE Transactions on Magnetics, 16, 178-183 (1980).
36. Cho, Y. S., Choi, G. S., Hong, S. Y. and Kim, D., “Carbon Nanotube Synthesis Using a Magnetic Fluid via Thermal Chemical Vapor Deposition,” Journal of Crystal Growth, 243, 224-229 (2002).
指導教授 秦靜如(Ching-Ju Monica Chin) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明