博碩士論文 943206018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.208.132.33
姓名 翁國豪(Guo-Hau Weng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 生質燃燒氣膠長程傳輸與高山雲霧間隙氣膠特性之研究
(The characteristics of biomass burning aerosol from long-range transport and cloud interstitial aerosol from high elevation mountain)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 東南亞地區生質燃燒活動發生的季節主要在每年的3到5月,這些開放式燃燒產生的氣膠和氣體會影響大氣輻射收支,並影響到下風地區的空氣品質。台灣正好位於氣團傳輸的下風處,是觀測東南亞生質燃燒的最佳地點。為了避免受到平地污染物的干擾,本文從2006年6月至2007年4月在海拔2,862公尺高的鹿林站進行8次大氣氣膠觀測,以期瞭解受生質燃燒氣團傳輸影的氣膠特性。
本文使用安裝與未安裝活性碳管的採樣器來推估使用氣膠碳成份,未安裝活性碳管但在濾紙組合內安裝三張石英濾紙,估算的生質燃燒和非生質燃燒事件期間氣膠碳成分分別為8.5 ± 3.89 μg-C m-3和1.78 ± 1.07 μg-C m-3,空氣中揮發性有機物(VOCs)的OC等似平均濃度為0.54 ± 0.24 μg m-3,從濾紙上微粒揮發的VOCs是可忽略的;但安裝活性碳管採樣器的微粒揮發VOCs是明顯的。在鹿林站使用鐵氟龍和石英兩種濾紙材質採集氣膠,分析其水溶性離子發現除了氯離子以外,都是以石英濾紙分析得到較高的濃度,顯示出有些成分不易從鐵氟龍濾紙萃取出來。
鹿林站於生質燃燒事件日細氣膠濃度為非生質燃燒期間濃度的5倍,銨根離子、硝酸根離子和硫酸根離子平均濃度分別為1.37μg m-3、1.58μg m-3和3.30μg m-3。生質燃燒污染物指標之ㄧ的鉀離子濃度為0.59μg m-3,是非生質燃燒期間的4倍。OC各成份濃度在生質燃燒事件日觀測期間都明顯增加,但元素碳(EC)只有EC1-OP濃度增加。左旋葡萄糖在生質燃燒事件日濃度為非生質燃燒期間的9倍,低分子量二元酸以oxalic acid為優勢物種,且與硫酸鹽有很好的相關性,顯示兩者有相同的來源。
鹿林站採集雲霧間隙氣膠的結果顯示氣膠成分中以二次污染物銨根離子、硝酸根離子和硫酸根離子為主。碳成分中以低溫揮發的OC1和OC2比例增加最多,推測這些低飽和蒸汽壓的VOCs於傳輸的過程中會凝結在細氣膠表面,導致OC1和OC2濃度增加。
逆溯軌跡線分類方面,海洋傳輸(NBB-O)由於不受污染,因此所有成分濃度都是最低的;大陸傳輸(NBB-C)發現粗粒徑氣膠濃度明顯上升,推測可能有受到大陸沙塵的影響;比較源區(source)與源區經中國南方(source region via southern China)的結果發現後者在粗細粒徑氣膠、硫酸鹽以及oxalic aicd濃度都有明顯的增加。
為了比較新生和傳輸氣膠成分上的差異,本文進行稻草燃燒實驗,結果顯示燃燒後的煙團主要是以氯化鉀的形式存在,經過短程傳輸後氯離子會快速損失,但鉀離子仍為主要的物種。硝酸鹽於新生和短程傳輸過程中都不是主要的物種,顯示硝酸鹽不會在生質燃燒過程中產生。
摘要(英) Biomass burning (BB) in Southeast Asia frequently occurs from March to May every year. The large-scale open burning produces tremendous amount of aerosol and gases to influence atmospheric radiation budget and the air quality in the downwind area. Taiwan is located in the downwind area of the air masses transported from Southeast Asia. This makes it one of the best places to observe the modification on atmospheric aerosol from BB plume. In order to avoid the interference from ground-level pollution, this study observed atmospheric aerosols at the Lulin Mountain site (2,862 m a.s.l.) for eight times from June 2006 to April 2007. The objective of this study is to investigate aerosol properties modified by BB plume.
The estimates of aerosol carbons were compared between sampling devices with and without a preceeding activated carbon denuder. The estimates of aerosol carbons from the sampling device without a preceeding activated carbon denuder but with three quartz filters in series during BB event and non-event period are 8.5 ± 3.89 μg-C m-3 and 1.78 ± 1.07 μg-C m-3, respectively. Meanwhile, the average of volatile organic carbons (VOCs) was estimated at 0.54 ± 0.24 μg-C m-3 in terms of equivalent organic carbon (OC). The VOCs evaporated from deposited particles were found negligible. However, the VOCs evaporated from deposited particles from sampling device with a preceeding activated carbon denuder were obvious. The aerosol water-soluble ions resolved from quartz filters were more abundant than those from Teflon filters except for chloride ion. This indicates some species might be retained by the extracted Teflon filters.
In the BB event, fine particle concentration was five times as much as that in the non-event period. Ammonium, nitrate, and sulfate ions are 1.37μg m-3, 1.58μg m-3, and 3.30μg m-3, respectively, during the event period. One of the BB tracers, potassium ion, is at 0.59μg m-3 during the event period, which is four times as high as that in the non-event period. The OC fractions increased significantly during the event period; however, only EC1-OP of EC fractions increased significantly. Meanwhile, aerosol levoglucosan was nine times higher in the event than that in the non-event period. In addition, aerosol oxalic acid was the dominant species of low-molecular-weight dicarboxylic acids; it correlated well with sulfate ion. This suggests both were from the same source origin.
The analyses of cloud interstitial aerosol collected at the Lulin site show secondary pollutants such as ammonium, nitrate and sulfate ions are the three major water-soluble ions. Among aerosol OC fractions, low-temperature evolved OC1 and OC2 increased more than the others, it suggests that low-vapor-pressure VOCs condensed on the surface of fine aerosol during transport.
In the classification of back-trajectory pathways, because of the pathway from the ocean during the background period belong to unpolluted, the concentrations of all of the components from there are lowest; the coarse mode particle concentrateion from China pathway during the background period increase significant, this suggest that the aerosol form China may be affected by dust storm; the result of comparison between source region and source region via southern China show that the latter concentrateion of coarse and fine aerosol, sulfate and oxalic acid enhance significant.
In order to compare the difference between fresh and aged aerosol, this study conducted an experiment of rice straw burning in the field. The results show that potassium chloride is significant in newly burned smoke. Part of chloride ion was lost soon after a short distance transport, but potassium ion remained abundant in aerosol water-soluble ions. In contrast, nitrate ion was not significant in both fresh and slightly aged aerosols. This reveals that nitrate ion is not produced in the BB process.
關鍵字(中) ★ 雲霧間隙氣膠
★ 短程傳輸氣膠
★ 氣膠碳成分採集
★ 生質燃燒
★ 高山氣膠
關鍵字(英) ★ aerosol carbon collection
★ short distance transport
★ biomass burning
★ cloud interstitial aerosol
★ mountain aerosol
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氣膠分類、來源及粒徑分布 3
2.2 氣膠的特性 3
2.2.1 氣膠的物理特性 3
2.2.2 氣膠的化學特性 4
2.2.3 氣膠碳成分化學特性 6
2.3 高山氣膠的特性 7
2.4 生質燃燒 9
2.4.1 生質燃燒來源 9
2.4.2 生質的組成 12
2.4.3生質燃燒的過程 12
2.4.4 生質燃燒氣體特性 13
2.4.5 生質燃燒氣膠生成 13
2.4.6 生質燃燒光學特性 14
2.4.7 生質燃燒氣膠的化學特性 14
2.4.8 生質燃燒追蹤劑 19
2.4.9 生質燃燒氣膠傳輸特性 21
2.4.10 生質燃燒氣膠對人體及環境的影響 22
2.5 雲霧間隙氣膠 22
2.6 微粒有機碳量測誤差推估 23
第三章 研究方法 28
3.1 採樣方法與採樣器 31
3.1.1 採樣地點描述 31
3.1.2 採樣時間 34
3.1.3 採樣儀器 34
3.1.4 採樣濾紙選擇及前處理程序 36
3.2 樣本分析方法 38
3.2.1 氣膠質量濃度分析 38
3.2.2 氣膠水溶性離子分析 38
3.2.3 氣膠碳成分分析 39
3.2.4 氣膠有機成分分析-左旋葡萄糖 41
3.2.5 二元酸分析 43
3.3 農廢燃燒現地採樣 44
3.4 推估氣膠有機碳(POC)的誤差 44
3.4.1以EC進行討論 44
3.4.2以OC進行討論 45
3.5雲霧間隙氣膠的收集 46
3.6判別生質燃燒發生的方法 46
3.7氣膠指標成分濃度與比值的意義 48
第四章 結果與討論 49
4.1非生質燃燒與生質燃燒期間氣膠微粒有機碳(POC)的推估 51
4.1.1安裝活性碳管造成的差異 51
4.1.2氣膠有機碳(POC)的推估 53
4.2石英濾紙與鐵氟龍濾紙採集PM2.5氣膠水溶性離子差異 58
4.3鹿林站觀測期間污染物濃度特性差異 63
4.3.1微粒來源的確認 63
4.3.2鹿林站觀測期間環境狀況及軌跡線描述 66
4.3.3鹿林站觀測期間氣膠質量濃度與氣體差異 73
4.3.4鹿林站觀測期間氣膠水溶性離子特性 84
4.3.5鹿林站觀測期間氣膠碳成分特性 86
4.3.6鹿林站觀測期間氣膠有機成分特性 90
4.4雲霧間隙氣膠(interstitial aerosol)特性 94
4.4.1雲霧間隙氣膠質量濃度 95
4.4.2雲霧間隙氣膠水溶性離子 99
4.4.3雲霧間隙氣膠碳成分 103
4.5逆溯氣流軌跡分類氣膠特性探討 107
4.5.1逆溯氣流軌跡線分類 107
4.5.2各氣流軌跡傳輸類型氣膠質量濃度 108
4.5.3各氣流軌跡傳輸類型氣膠水溶性離子 111
4.5.4各氣流軌跡傳輸類型氣膠碳成分 113
4.5.5各氣流軌跡傳輸類型氣膠有機成分特性 115
4.5.6 各氣流軌跡傳輸類型離子比值與相關性 118
4.6農業廢棄物現地燃燒氣膠特性 122
4.6.1採樣地點與天氣狀況描述 122
4.6.2近稻草燃燒源、短程傳輸與悶燒氣膠 125
第五章 結論與建議 131
5.1結論 131
5.2建議 134
第六章 參考文獻 135
附錄一 口試委員意見答覆 151
參考文獻 秦若鈺,2004。大氣常見有機物分析及有機/無機混和氣膠含水特性之研究。國立中央大學環境工程研究所碩士論文。
黃希爾,2004。東亞生質燃燒對台灣高山氣膠特性的影響。國立中央大學環境工程研究所碩士論文。
陳鴻文,2006。生質燃燒長程傳輸對台灣中部高山氣膠特性及其指標物影響。國立中央大學環境工程研究所碩士論文。
劉原良,2006。生質燃燒與非生質燃燒期間台灣中部高山氣膠及其前驅氣體特性變化。
Abas, M. R., Oros, D. R., Simoneit, B. R. T., 2004. Biomass burning as the main source of organic aerosol particulate matter in Malaysia during haze episodes. Chemosphere, 55, 1089–1095.
Abas, M. R., Simoneit, B. R. T., 1996. Composition of extractable organics matter of air particles from Malaysia:initial study. Atmospheric Environment, 30, 2779–2793.
Abas, M. R., Simoneit, B. R. T., Elias, V., Cabral, J. A., Cardoso, J. N., 1995. Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia. Chemosphere, 30, 995–1015.
Aikawa M., Hiraki T., Suzuki M., Tamaki M., Kasahara M., 2007. Separate chemical characterizations of fog water, aerosol, and gas before, during, and after fog events near an Industrialezed area in Japan. Atmospheric Environment, 41, 1950–1959.
Anderson, R. R., Martello, D. V., Rohar, P. C., Strazisar, B. R., Tamilia, J. P., Waldner, K., White, C. M., Modey,W. K., Mangelson, N. F., Eatough, D. J., 2002. Sources and Composition of PM2.5 at the National Energy Technology Laboratory in Pittsburgh During July and August 2000, Energy and Fuels, 16(2), 261–269.
Andreae, M. O., 1983. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols, Science, 220(4602), 1148–1151.
Andreae, M. O., Andreae, T.W., Annegam, H., Beer, J., Cachier, H., le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F. G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research, 103(D24), 32119-32128, 10.1029/98JD02280.
Andreae, M. O., Jones, C. D., Cox, P. M., 2005. Strong present-day aerosol cooling implies a hot future. Nature, 435, 1087–1190.
Andreae, M. O., Merlet, P., 2001. Emission of tracer gases and aerosols from biomass burning. Global Biochemical Cycles, 15, 955-966.
Bey, I., Jacob, D. J., Logan, J. A., Yantosca, R. M., 2001b. Asian chem.ical outflow to the Pacific: origins, pathways, and budgets. Journal of Geophysical Research, 106, 23097-23114.
Brauer, M., Hisham-Hashim, J., 1998. Fires in Indonesia: crisis and reaction. Environment Science and Technology, 32, 404. A–407A.
Breon, F. M., 2006. How do aerosols affect cloudiness and climate?. Science, 313 (5787), 623–624.
Breon, F. M., Tanre, D., Generoso, S., 2002. Aerosol effect on cloud droplet size monitored from satellite. Science, 295 (5556), 834–838.
Cachier, H., Liousse, G., Buat-Menard, P., Gaudichet, A., 1995. Particulate content of savanna fire emission. Journal of Atmospheric Chemistry, 22, 123–148.
Cadle, S. H., Dash, J. M., 1988. Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in Northern Michigan. Atmospheric Environment, 22, 1373–1381.
Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., Hofmann, D. J., 1992. Climate forcing by anthropogenic aerosols. Science, 255, 423–430.
Chow, J. C., Watson, J. G., Lowenthal, D. H., Solomon, P. A., Maglino,K. L., Ziman, S. D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology, 18,105–128.
Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., Purcell, R. G., 1993. The DRI Thermal/Optical Reflectance carbon analysis system: Description, evaluateon and applications in U.S. air quality studies, Atmospehric Environment, 27A(8), 1185–1201.
Chow, J. C., Watson, J. G., Lu, Z. Q., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., Thuillier, R. H., Magliano, K., 1996. Descriptive Analysis of PM2.5 and PM10 at Regionally Representative Locations During SJVAQS/AUSPEX, Atmospheric Environment, 30(12), 2079–2112.
Crutzen, P. J., Andreae, M. O., 1990. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1369–1378.
Countess, R. J., Wolff, G. T., Cadle, S. H., 1980. The Denver 173 winteraerosol: a comprehensive chemical characterization, Journal of the Air Pollution Control Association, 30, 1194–1200.
Crutzen, P. J., Andreae, M. O., 1990. Biomass burning in the Tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669–1678.
Delfino, R. J., Zeiger, R. S. Seltzer, J. M., Street, D. H., McLaren, C. E., 2002. Association of asthma symptoms with peak particulate air pollution and effect modification by anti-inflammatory medicateon use. Environmental Health Perspectives, 110 (10), A607–617.
Delfino, R. J., Gong, H., Linn, W. S. Pellizzari, E. D. Hu, Y., 2003. Asthma symptoms in Hispanic children and daily ambient exposures to toxic and criteria air pollutants. Environment Health Perspectives, 111 (4), 647–656.
Ding, Y., Pang, Y., Eatough, D. J., Eatough, N. L., Tanner, R. L., 2002b. High-Volume Diffusion Denuder Sampler for the Routine Monitoring of Fine Particulate Matter: II. Field Evaluation of the PC-BOSS, Aerosol Science and Technology, 36(4), 383–396.
Draxler, R.R., 1999. Hybrid single-particle lagrangian integrated trajectories: Version 0-User’s Guide. NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Sliver Spring, MD, USA.
Eatough, D. J.,Wadsworth, A., Eatough, D. A., Crawford, J. W., Hansen, L. D., Lewis, E. A., 1993. AMultiple-System, Multichannel Diffusion Denuder Sampler for the Determination of Fine-Particulate Organic Material in the Atmosphere, Atmospheric Environment, 27(A8), 1213–1219.
Echalar, F., Gaudichet, A., Cachier, H., Artaxo, P., 1995. Aerosol emission by tropical forest and savanna biomass burning:characteristic trace elements and fluxes. Geophysical Research Letters, 22(22), 3039–3042.
Edye, L. A., Richards, G. N., 1991. Analysis of condensates from wood smoke: components derived from polysaccharides and lignins. Environment Science and Techology, 25, 1133-1137.
Fang, M., Zheng, M., Wang, F., To, K. L., Jaafar, A. B., Tong, S. L., 1999. The solvent-extractable organic compounds in the Indonesia biomass burning aerosols-characterization studies. Atmospheric Environment, 33, 783–795.
Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research, 103, 32107–32118.
Formenti, P., Elbert, W., Maenhaut, W., Haywood, J., Osborne, S., Andreae, M. O., 2003. Inoganic and carbonaceous aerosols during the Southern African Regional Science initiative (SAFARI2000)experiment: Chemical characteristics, physical properties, and emission date for smoke from African biomass burning. Journal of Geophysical Research, 108(D13), doi: 1029/2002JD002408.
Frenklach, M., 2002. Reaction mechanism of soot formation in flames. Phy. Chem. Chem. Phys, 4, 2028-2037.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J. P., Maligret, G., Cachier, H., Menard, P. B., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning serosols. Journal of Atmospheric Chemistry, 22, 19–39.
Glassman, I., 1988. Soot formation in combustion process, in Twenty-Second Symposium (International) on combustion. The Combustion Institute, Pittsburgh, pp. 295.
Gray, H. A., Cass, G. R., Huntzicker, J. J., Heyerdahl, E. K., Rau, J. A., 1986. Characteristics of Atmospheric Organic and Elemental Carbon Particle Concentrations in Los Angeles, Environmental Science and Technology, 20(6), 580–589.
Guazzotti, S. A., Suess, D. T., Coffee, K. R., Quinn, P. K., Bates, T. S., Wisthaler, A., Hansel, A., Ball, W. P., Dickerson, R. R., Neususs, C., Crutzen, P. J., Prather, K. A., 2003. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion. Journal of Geophysical Research, 108 (D15), 4485.
Hart, K. M., Pankow, J. F. 1994. High-Volume Air Sampler for Particleand Gas Sampling. 2. Use of Backup Filters to Correct for the Adsorption of Gas-Phase Polycyclic Aromatic-Hydrocarbons to the Front Filter, Environment Science Technology, 28(4), 655–661.
Hawthorne, S. B., Krieger, M. S., Miller, D. J., Mathiason, M. B., 1989. Collection and quantification of methoxylated phenol tracers for atmospheric pollution from residential wood stoves. Environment Science Technology, 23, 470–475.
Hawthorne, S. B., Miller, D. J., Barkley, R. M., Krieger, M. S., 1988. Identification of methoxylated phenols as candidate tracers for atmospheric wood smoke pollution. Environment Science Technology, 22, 1191–1196.
Hawthorne, S. B., Miller, D. J., Langenfeld J. J., Krieger, M. S., 1992. PM10 high volume collection and quantitation of semi- and nonvolatile phenols, methoxylated phenols, alkanes and polycyclic aromatic hydrocarbons for winter urban air and their relationship to wood smoke emission. Environment Science and Technology, 26, 2251–2262.
Henning, S., Weingartner, E., Schwikowski, M., Ga¨ggeler, H. W., Gehrig, R., Hinz, K. P., Trimborn, A., Spengler, B., Baltensperger U., 2003. Seasonal variation of water-soluble ions of the aerosol at the high-alpine site Jungfraujoch (3580 m asl). Journal of Geophysical Research, 108(D1), 4030, doi:10.1029/2002JD002439.
Hinz, K. P., Trimborn, A., Weingartner, E., Henning, S., Baltensperger, U., Spengler, B., 2005. Aerosol single particle composition at the Jungfraujoch. Aerosol Science, 36, 123–145.
Hitzenberger, R., Berner, A., Giebl, H., Deobesch, K., kasper-Giebl, A., Loeflund, M., Urban, H., Puxbaum, H., 2001. Black carbon (BC) in Alpine aerosols and cloud water-concentrations and scavenging efficiencies. Atmospheric Environment, 35, 5135-5141.
Hobbs, P.V., Sinha, P., Yokelson, R., Christian, T.J., Blake, D.R., Gau, S., Kirchstetter, T.W., Novakov, T., Pilewskie, P., 2003. Evolution of gases and particles from a savanna fire in South Africa. Journal of Geophysical Research, 108(D13), 8454, doi: 10.1029 /2002JD002352.
Intergovemental Panel on Climate Change (IPCC), 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Kiehl, J. T., Rpdhe, H., 1995. Modeling geographical and seasonal forcing due to aerosols: In: Charlson, R. J., Heintzenberg, J. (Eds), Aerosol Forcing of Climate. Wiley, New York, 281–296.
Krivacsy, Z., Hoffer, A., Sarvari, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingartner, E., Kleefeld, S., Jennings, S. G., 2001. Role of organic and black carbon in the chemical composition of atmospheric aerosol at European background sites. Atmospheric Environment, 35, 6231–6244.
Kirchstetter, T. W., Corrigan, C. E., Novakov, T., 2001. Laboratory and Field Investigation of the Adsorption of Gaseous Organic Compounds onto Quartz Filters, Atmosphere Environment, 35(9), 1663–1671.
Kim, B. M., Cassmassi, J., Hogo, H., Zeldin, M. D. 2001. Positive Organic Carbon Artifacts on Filter Medium DuringPM2.5 Sampling in the South Coast Air Basin, Aerosol Science Technology, 34(1), 35–41.
Kim, E., Hopke, P. K., Edgerton, E. S., 2004. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment, 38, 3349–3362.
Koutrakls, P., Sloulas, C., Ferguson, S. T., Wolfson, J. M., 1993. Development and Evaluation of a Glass Honeycomb Denuder/Filter Pack System to Collect Atmospheric Gases and Particles. Envlron Science Technology, 27, 2497-2501.
Kulshrestha, U. C., Jain, M., Sekar, R., Vairamani, M., Sarkar, A. K., Parashar, D. C., 2001. Chemical characteristics and source apportionment of aerosols over Indian Ocean during INDOEX-1999. Current Science, 80, 180-185.
Lara, L. L., Artaxo, P., Martinelli, L. A., Camargo, P. B., Victoria, R. L., Ferraz, E. S. B., 2005. Properties of aerosol from sugar-cane burning emission in Southeastern Brazil. Atmospheric Environment, 39, 4627-4637.
Larson, T. V., Koenig, J. Q., 1994. Wood smoke: Emissions and noncancer respireatory effects. Annu. Rev. Public Health, 15, 133-156.
Levine, J. S. (Ed.), 1991. Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press, Cambridge, MA, 569.
Levine, J. S. (Ed.), 1996. Biomass Burning and Global Change, vols. 1 and 2. MIT Press, Cambridge, MA.
Levine, J. S. (Ed.), 1996. Global Biomass Burning Remote Sensing, Modeling and Inventory development, and Biomass Burning in Afica. MIT press, Cambridge, MA, 581.
Levine, J. S., Cahoon Jr., D. R., Costulis, J. A., Couch, R. H., Davis, R. E., Garn, P. A., Jalink Jr., A., McAdoo, J. A., Robinson, D. M., Roettker, W. A., Sasamoto, W. A., Sherrill, R. T., Smith, K. D., 1996. FireSat and the global monitoring of biomass burning. In: Levine, J.S. (Ed.), Biomass Burning and Global Change, vol. 1.MIT Press, Cambridge, MA, pp. 107–129.
Liousse, C., Devaux, C., Dulac, F., Cachier, H., 1995. Aging of savanna biomass burning in southern Africa: Individual particle characterization of atmospheric aerosols and savanna fire samples. Journal of Atmospheric Chemistry, 22, 1–17.
Locker, H. B., 1988. The use of levoglucosan to assess the environment impact of residential wood-burning on air quality. Ph.D. thesis, Dartmouth College, Hanover, NH, 137pp.
Long, W., Tate, R., Neuman, M., Manfreda, J., Becker, A., Anthonisen, N., 1998. Respiratory symptoms in a susceptible population due to burning of agricultural residue. Chest 113 (2), 351–356.
Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., Cahill, T. A. 1994. Spatial and Seasonal Trends in Particle Concentration and Optical Extinction in the United-States, Journal of Geophysical Research, 99(D1), 1347–1370.
McArdle, J. V., Hoffmann, M. R., 1983. Kinetics and mechanism of the oxidation of aquated sulfur dioxide by hydrogen peroxide at low pH. The Journal of Physical chemistry, 87, 5425-5429.
Modey, W. K., Pang, Y., Eatough, N. L., Eatough, D. J. 2001. Fine Particulate (PM2.5) Composition in Atlanta, USA: Assessment of the Particle Concentrator-Brigham Young University Organic Sampling System, PCBOSS, During the EPA Supersite Study, Atmosphere Environment, 35, 6493–6502.
McDow, S. R., Huntzicker, J. J. 1990. Vapor Adsorption Artifact in the Sampling of Organic Aerosol—Face Velocity Effects, Atmosphere Environment, 24(A10), 2563–2571.
Mader, B. T., Pankow, J. F. 2001. Gas/Solid Partitioning of Semivolatile Organic Compounds (SOCs) to Air Filters. 3. An Analysis of Gas Adsorption Artifacts in Measurements of Atmospheric SOCs and Organic Carbon (OC) When Using Teflon Membrane Filters and Quartz Fiber Filters, Environment Science Technology, 35(17), 3422–3432.
Matsumoto, K., I. Nagao, H. Tanaka, H. Miyaji, T. Iida, Y. Ikebe, 1998. Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean, Atmosphere Environment, 32, 1931–1946.
Niemi, J. V., Tervahattu, H., Vehkamaki, H., Kulmala, M., Koskentalo, T., Sillampaa, M., 2004. Characterization and source identification of a fine particle episode in Finland. Atmospheric Environment, 38, 5003–5012.
NOAA Technical Memorandum ERL ARL-230, Air Resources Laboratory, Sliver Spring, MD, USA.
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454 m), Switzerland. Journal of Aerosol Science, 27, S105–S106.
Ohta, S., Okita, T., 1990. A chem.ical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment, 24A, 815-822.
Ojanen, C., Pakkanen, T., Aurela, M., Makela, T., Merilainen, J., Hillamo, R., Aarnio, P., Koskentalo, T., Hamekoski, K., Rantanen, L., Lappi, M., 1998. Size distribution, composition and sources of inhalable particles in the Helsinki metropolitan area (in Finnish with an abstract in English). Paakaupunkiseudun julkaisusarja C7. Helsinki Metropolitan Area Council (YTV), Helsinki.
Olmez, I., Sheffield, A. E., Gordon, G. E., Houck, J. E., Pritchett, L. C., Cooper, J. A., Dzubay, T. G., Bennett, R. L., 1988. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. Journal of Air Pollution Control Association, 38, 1392–1402.
Oros, D. R., Simoneit, B. R. T., 2000. Identification and emission rates of molecular tracers in coal smoke particulate matter. Fuel, 79, 515–536.
Oros, D., Simoneit, B., 2001a. Identification and emission factors of molecular tracer in organic aerosols from biomass burning: Part 1. Temperate climate conifers. Applied Geochemistry, 16 (13), 1513–1544.
Oros, D., Simoneit, B., 2001b. Identification and emission factors of molecular tracers in organic aerosol from bimass burning. Part 2. Deciduous tress. Applied Geochemistry, 1545–1565.
Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Makela, T., Hillamo, R.E., Aarnio, P., Koskentalo, T., Kousa, A., Maenhaut, W., 2001b. Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment, 35, 5381–5391.
Pandis, S. N., Seinfeld, J. H., Pilinis, C., 1990b. The smog-fog-smog cycle and acid deposition. Journal of Geophysical Research, 95, 18489-18500.
Parham, R.A., Gray, R.L., 1984. Formation and structure of wood. In: Rowell, R. (Ed.), Chemistry of Solid Wood. Adv. Chem. Series 207, American Chemical Society, Washington, DC, pp. 3-56.
Patterson, E. M., McMohan, C. K., 1984. Absorption characteristics of forest fire particulate matter. Atmospheric Environment 18, 2541–2551.
Puxbaum, H., Wopenka, B., 1984. Chemical composition of nucleation and accumulation mode particles collected in Vienna, Austria. Atmospheric Environment, 18, 573–580.
Pekkanen, J., Timonen, K. L., Ruuskanen, J., Reponen, A., Mirme, A., 1997. Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environmental Research, 71 (1), 24–33.
Peters, A., Dockery, D. W., Heinrich, J., Wichmann, H. E., 1997. Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. European Respiratory Journal, 10 (4), 872–879.
Penner, J. E., Dong, X., Chen, Y., 2004. Observational evidence of a change in radiative forcing due to the indirect aerosol effect. Nature, 427 (6971), 231–234.
Raes, F., R. Van Dingenen, E. Vignati, J. Wilson, J. P. Putaud, J. H. Seinfeld, P. Adams, 2000. Formation and cycling of aerosols in the global troposphere, Atmosphere Environment, 34, 4215–4240.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D., 2001. Atmosphere- Aerosols, Climate, and the hydrological cycle. Science, 294, 2119-2124.
Ramdahl, T., 1983. Retene-a molecular marker of wood combustion in ambient air. Nature, 306, 580–582.
Rattray, G., Sievering, H., 2001. Dry deposition of ammonia, nitric acid, ammonium, and nitrate to alpine tundra at Niwot Ridge, Colorado. Atmospheric Environment, 35, 1105–1109.
Roberts, G. C., Andreae, M. O., Maenhaut, W., Fernandez-Jimenez, M. T., 2001. Composition and sources of aerosol in a central African rain forest during the dry season. Journal of Geophysical Research, 106 (D13), 14423-14434.
Roemer, W., Hoek, G., Brunekreef, B., 2000. Pollution effects on asthmatic children in Europe, the PEACE study. Clinical and Experimental Allergy, 30 (8), 1067–1075.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G, R. Simoneit, B. R. T., 1991. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science and Technology 25, 1112–1125.
Rogge, W. F., Mazurek, M. A., Hildemann, L. M., Cass, G. R., Simoneit, B. R. T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 27A, 1309–1330.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., Simoneit, B. R. T., 1998. Sources of fineorganic aerosol: 9. Pine, oak and synthetic log combustion in residential fireplaces. Environmental Science and Technology, 32, 13–22.
Romieu, I., Meneses, F., Ruiz, S., Sienra, J. J., Huerta, J., White, M. C., Etzel, R. A., 1996. Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. American Journal of Respiratory and Critical Care Medicine, 154 (2), 300–307.
Rosenfeld, D., 2006. Aerosols, clouds, and climate. Science, 312 (5778), 1323–1324.
Ruellan, S., Cachier, H., Caudichet, A., Masclet, P., Lacaux, J. P., 1999. Airborne aerosols over Africa during the Experiment for Regional Sources and Sinks of Oxidants (EXPRESSO). Journal of Geophysical Research, 104, 30673–30690.
Ryu, S. Y., Kim, J. E., Zhuanshi, H., Kim, Y. J., 2004. Chemical composition of post-harvest biomass burning aerosols in Gwangiu, Korea. Journal of Air and Waste Management Association, 54, 1124-1137.
Salam, A., Bauer, H., Kassin, K., Ullah, S. M., Puxbaum, H., 2003. Aerosol chemical characteristics of an island site in the Bay of Nengal (Bhola-Bangladesh). J. Environment Monit, 5, 483–490.
Sandberg, D., Martin, R., 1975. Particle sizes in slash fire smoke, Portland, OR, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B. R. T., 1999a. Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environment Science Technology, 33, 1566–1577.
Seinfeld. J. H., Pandis, S. N., 1998. Atmospheric chemistry and physics. John Wiley and Sons, Inc., New York, N. Y., U.S.A.
Sellegri K., Laj P., Dupuy R., Legrand M., Preunkert S., Putaud J. P., 2003. Size-dependent scavenging dfficiencies of multicomponent atmospheric aerosols in clouds. Journal of Geophysical Research, 108, 4334, doi:10.1029/2002JD002749.
Shafizadeh, F., 1984. The chemistry of pyrolysis and combustion. In: Rowell, R. (Ed), Chemistry of solid wood, Adv. Chem. Series 207. American Chemical Society. Washington, DC, 489-529.
Shah, J. J., Johnson, R. L., Heyerdahl, E. K., Huntzicker, J. J. 1986. Carbonaceous Aerosol at Urban and Rural Sites in the United States, Journal of Air Pollution Control Association, 36(3), 254–257.
Sheffield, A. E., Gordon, G. E., Currie, L. A., Riederer, G. E., 1994. Organic, elemental, and isotopic tracers of air pollution in Albuquerque,NM. Atmosphere Environment, 28, 1371–1384.
Simoneit, B. R. T., Mazurek, M.A., 1982. Organic matter of the troposphere Ⅱ. Natural background of biogenic lipid matter in aerosols over the rural western US. Atmospheric Environment, 16, 2139–2159.
Simoneit, B. R. T., Mazurek, M. A., Reed, W. E., 1983. Characterization of organic matter in aerosols over rural sites: phytosterols. In Advances in Organic Geochemistry 1981, eds. M. Bjoroy et al., pp355–361. Wiley, Chichester.
Simoneit, B. R. T., Cox, R., Stanley, L., 1988. Organic matter of the troposphere IV. Lipids in Harmattan aerosol of Nigeria. Atmospheric Environment, 22, 983–1004.
Simoneit, B. R. T., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., Rogge, W. F., Cass, G. R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmosphere Environment, 33, 173–182.
Simoneit, B. R. T., Oros, D. R., Elias, V. O., 2000a. Molecular tracers for smoke from charring/burning of chitin biopolymer. Chemosphere: Global Change Science, 2, 101–105.
Simoneit, B. R. T., Rogge, W. F., Lang, Q., Jaffė, R., 2000b. Molecular characterization of smoke from campfire burning of pine wood(Pinus elliottii). Chemosphere:Global Change Science, 2, 107–122.
Simoneit, B. R. T., Rogge, W. F., Mazurek, M. A., Standley, L. J., Hildemann, L. M., Cass, G. R., 1993. Lignin pyrolysis products, lignans and resin acids as specific tracers of plant classes in emissions from biomass combustion. Environment Science Technology, 27, 2533–2541.
Simoneit, B. R. T. Elias, V. O., 2000. Organic tracers from biomass burning in atmospheric particulate matter over the ocean. Marine Chemistry, 69, 301–312.
Simoneit, B. R. T., Elias, V. O., 2001. Detecting Organic Tracers from Biomass Burning in the Atmosphere. Marine Pollution Bulletin, 42. 805-810.
Skaar, C., 1984. Wood-water relationships. In: Rowell, R. (Ed), Chemistry of Solid Wood, Adv. Chem. Series 207. American Chemical Society, Washington, DC, 127-172.
Standley, L. J., Simoneit, B. R. T., 1987. Composition of extractable organic matter in smoke particles from prescribed burns. Environment Science Technology, 21, 163–169.
Standley, L. J., Simoneit, B. R. T., 1994. Resin diterpenoids as tracers for biomass combustion aerosols. Journal of Atmospheric Chemistry, 18, 1–15.
Streets, D. G., Yarber, K. F., Woo, J. H., Carmichael, G. R., 2003. Biomass burning in Asia:annual and seasonal estimates and atmospheric emissions. Global Biogeochemical cycles.
Sutherland, R., 2004. Outpatient treatment of chronic obstructive pulmonary disease:comparisons with asthma. Journal of Allergy and Clinical Immunology, 114, 715–724.
Sutherland, R., Martin, R., 2003. Airway inflammation in chronic obstructive pulmonary disease: comparisons with asthma. Journal of Allergy and Clinical Immunology, 112, 819–827.
Tirigoe, K., Satoshi, H., Numata, O., Yazaki, S., Matsunga, M., Boku, N., Hiura, M., Ino, H., 2000. Influence of emission from rice straw burning on bronchial asthma in children. Pediatrics International, 42, 143–150.
Turns, S. R., 1996. An introducetion to combustion, Concepts and Applications McGuaw hill, New York, 291-297.
Turpin, B. J., Saxena, P., Andrews, E. 2000. Measuring and Simulating Particulate Organics in the Atmosphere: Problems and Prospects, Atmosphere Environment, 34(18), 2983–3013.
Turpin, B. J., Huntzicker, J. J., Hering, S. V., 1994. Investigation of Organic Aerosol sampling Artifacts in the Los Angeles Basin, Atmosphere Environment, 28(19), 3061–3071.
US EPA., 2004. Air quality criteria for particulate matter. EPA/600/P-99/022aF and bF. October 2004. US Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Research Triangle Park Office, Research Triangle Park, NC 27711.
Valaoras, G., Huntzicker, J. J., White, W. H., 1988. On the contribution of motor vehicles to the Athenian “Nephos”; an application of factor signitres. Atmpspheric Environment, 22, 965–971.
Vedal, S., Petkau, J., White, R., Blair, J., 1998. Acute effects of ambient inhalable particles in asthmatic and nonasthmatic children. American Journal of Respiratory and Critical Care Medicine, 157 (4), 1034–1043.
Weast, R.C., Astle, M.J. (Eds.), 1983. CRC Handbook of Chemistry and Physics. CRC Press, Inc., Boca Raton, Florida, USA
Whitby, K. T., Cantrell, B., 1976. Fine particles, in International Conference on Environmental Sensing and Assessment, Las Vegas, NV, Institute of Electrical and Electronic Engineers.
Yamasoe, M. A., Paulo, A., Miguel, A. H., Allen, A. G., 2000. Chemical composition of aerosol particles from different emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmopheric Environment, 34, 1641-1653.
Yeatman, S. G., Spokes, L. J., Dennis, P. F., Jickells T. D., 2001a. Comparisons of aerosol nitrogen isotopic composition at two polluted coastal sites, Atmosphere Environment, 35, 1307–1320.
Yu, O.C., Sheppard, L., Lumley, T., Koenig, J. Q., Shapiro, G. G., 2000. Effects of ambient air pollution on symptoms of asthma in Seattle-area children enrolled in the CAMP study. Environmental Health Perspectives, 108 (12), 1209–1214.
Zdrahal, Z., oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. improved Method for Quantifying Levoglucosan and Related Monosaccharide Anhydrides in Atmospheric Aerosols and Application to Samples form Urban and Tropical Locations, Environment Science and Technology, 36, 747–753.
指導教授 李崇德(CTLEE) 審核日期 2008-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明