博碩士論文 943206019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.81.29.226
姓名 林敬傑(Ching-Chieh Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 薄膜程序處理及回收薄膜生物反應槽(MBR)出流水之研究
(Treatment and Recovery of membrane bioreactor (MBR) effluent by membrane processes)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用超濾(UF)與逆滲透(RO)薄膜程序處理人工染料廢水(SDW)、都市污水(DW)、食品廢水(FPW)及TFT-LCD製程廢水(TFT-LCD)經薄膜生物反應槽(Membrane Bioreactor, MBR)處理之出流水,評估UF、RO程序回收再利用MBR出流水之可行性,並探討SDW MBR出流水水質特性對RO薄膜過濾機制的影響。
研究結果顯示,四種原水的MBR出流水中,僅有微量的懸浮物質,濁度介於0.01~1.82 NTU,大多以溶解性有機物及無機鹽類存在,其中有機物主要為溶解性微生物產物(Soluble Microbial Product, SMP),其分子量分佈受到原飼水及不同MBR程序所影響,與傳統生物程序產生的SMP分子量分佈有所差異。MBR出流水經薄膜程序處理後,可有效去除出流水中溶解性有機物及無機鹽類,SDW、DW、TFT-LCD經由RO處理之滲透液導電度、TOC及TS之去除率,分別為85~98%、85~94%及94~99%,而FPW經由UF/RO處理後,滲透液導電度、TOC及TS之去除率,分別為91.1%、93.8%、90.9%,此外,RO對SMP有很好的去除效果,尤其對分子量較大的含芳香族SMP,有較高的去除率。
在以RO處理SDW過濾機制之探討中,發現RO膜表面累積微量有機物,且溶液擴散模式可有效推測滲透液濃度,誤差範圍小於±30%以內,顯示RO膜過濾SDW仍以溶液擴散為主要去除機制。此外,利用模式推測滲透液的TOC濃度均比實際滲透液中的TOC濃度低,其原因可能是微量有機物於膜面發生濃度極化,使得模式有低估的現象。
本研究另以模場進行長效性操作評估,DW經RO程序處理之造水成本為28元/噸,各項水質指數皆可達80~90%之去除效率,且滲透液可用於半導體Ⅳ級純水,或可作為超純水進料水。但若以工業取水成本評估,其造水成本仍偏高,未來若能實施水污費徵收、調整水價及以法規規範各產業之水回收再利用率後,以 RO 程序回收MBR出流水,仍然具有優勢與可行性。
摘要(英) The purpose of this research is to evaluate the feasibility of water reuse treated by UF and RO membrane processes. The processes treat four types of membrane bioreactor (MBR) effluent, containing synthetic dye wastewater (SDW), domestic wastewater (DW), food processing wastewater (FPW) and organic wastewater form TFT-LCD industry (TFT-LCD). Simultanesously, the mechanism for RO process for the rejection of contaminants in SDW is also supposed.
The result shows that there is slight suspend solid in the effluent of MBR, and the major contaminants are salt and solute organic substances which almost consist of Soluble Microbial Product (SMP) in the effluent of MBR. Because of complex feedwater chemistry and distinct MBR process, the molecular weight distribution of SMP in MBR effluent and in traditional biological process is different. However membrane process can remove the residual solute organic substances and salt efficiently. The conductivity, TOC and TS removal efficiencies of SDW, DW and TFT-LCD RO permeate are 85~98%, 85~94% and 94~99%. For FPW permeate, the rejections of UF/RO process in terms of conductivity, TOC and TS are 91.1%, 93.8% and 90.9%, respectively. In addition, the rejection of RO membrane for SMP which have large molecular weight is efficient.
According to the experiment treating SDW by RO, we find out that slight organic substances are accumulated on RO membrane. Because of the slight blocking phenomenon of RO membrane, we simulate the permeate water quality and the permeate flux by solution diffusion model to prove that solution diffusion is the major mechanism for RO process for the rejection of contaminants in SDW. The result show that the calculated concentration values in permeate are within ±30% of the experimental, so that solution diffusion model can be considered the major mechanism. Due to the small extent polarization concentration phenomenon on membrane surface, the TOC model results are tiny lower than the TOC experimental results.
In order to find the potential of application and feasibility of RO process, the long-term investigation try to analysis the pilot treatment cost of DW. The cost for DW is 28 NT/ton and the permeate can reuse to the semiconductor Ⅳ water and the feed of pure water machine. So RO process has competitive advantage to treat MBR effluent to reuse.
關鍵字(中) ★ 超濾
★ 逆滲透
★ 薄膜生物反應槽
★ 溶液擴散模式
★ 溶解性微生物產物
關鍵字(英) ★ ultrafiltration
★ reverse osmosis
★ membrane bioreactor
★ solution diffusion model
★ soluble microbial product
論文目次 摘要……………………………………………………………………..i
Abstract……………………………………………………………….ii
誌謝……………………………………………………………………iii
目錄…………………………………………………………………….iv
圖目錄………………………………………………………………..vii
表目錄……………………………………………………………….….x
符號表…………………………………………………………………xii
第一章 前言…………………………………………………………..01
1.1 研究緣起…………………………………………………….....01
1.2 研究目的…………………………………………………….....02
第二章 文獻回顧………………………………………………………03
2.1生物處理程序出流水特性………………....................03
2.1.1 SMP特性…………………………………………………….03
2.1.2 影響SMP生成因子…………………..…………………….04
2.1.3 MBR出流水特性……………..…………………………….08
2.1.4 MBR出流水中SMP之特性………………..………………..09
2.2 薄膜程序…………………………………………………….....12
2.2.1 薄膜種類與形式……………………………………………12
2.2.2 薄膜過濾原理與去除機制…………………………………14
2.2.3 薄膜模式……....…………………………………………22
2.2.4 薄膜程序應用與限制………………………………………26
2.3薄膜程序處理MBR出流水………………………………………...30
第三章 實驗材料及研究方法…………………………………………31
3.1 實驗材料………………………………………………………….31
3.2 實驗藥品………………………………………………………….36
3.3 實驗儀器與設備………………………………………………….36
3.4 實驗項目與步驟………………………………………………….40
3.5 分析項目及方法………………………………………………….45
第四章 結果與討論……………………………………………………50
4.1 MBR出流水水質特性分析………………………………………..50
4.1.1 MBR出流水水質特性……………………………….......50
4.1.2 MBR出流水回收再用評析規劃…………………………...56
4.2 薄膜程序處理MBR出流水之探討………………………………..59
4.2.1 薄膜程序過濾MBR出流水之處理成效…………………......59
4.2.2 逆滲透薄膜於不同清水回收率下之處理成效……………64
4.2.3 逆滲透薄膜過濾人工染料廢水之滲透液通量變化………70
4.3 逆滲透薄膜過濾 MBR出流水之膜面變化……….……………..72
4.4模式推估逆滲透薄過濾人工染料廢水之過濾機制…………....83
4.5 薄膜程序回收MBR出流水之整體評估……....………..………90
4.5.1 薄膜程序回收MBR出流水之可行性……….…………......90
4.5.2 逆滲透薄膜程序回收都市污水之長效性評估……......…99
第五章 結論與建議………………………………………………….105
5.1 結論………………………………………………………………105
5.2 建議………………………………………………………………106
參考文獻………………………………………………………………108
附錄…………………………………………………………………..118
附錄1 美國鍋爐用水與冷卻用水水質標準………………………..119
附錄2 美國工業用水水質標準………………………………………120
附錄3 美國半導體工業用水標準……………………………………121
附錄4 中水道二元供水系統建議標準…….……………………….122
附錄5 我國現行飲用水水質標準(94.05.30)……………………123
附錄6 溶劑擴散係數A…………..………………………………….124
附錄7 溶質擴散係數B……………………………………………….125
附錄8 滲透壓係數Ψ………………………………………………….................126
參考文獻 1. Ahn, K. H., H. Y. Cha, and K. G. Song, “Retrofitting municipal sewage treatment plants using an innovative membrane-bioreactor system,” Desalination, Vol.124, No. 1-3, pp. 279-286(1999).
2. Akbari, A. S. Desclaux, J. C. Remigy, and P. Aptel, “Treatment of textile dye effluents using a new photografted nanofiltration membrane,” Desalination, Vol. 149, No. 1-3, pp. 101-107(2002).
3. Alvarez, V., S. Alvarez, F. A. Riera, and R. Alvarez, “Permeate flux prediction in apple juice concentration by reverse osmosis,” Journal of Membrane Science, Vol. 127, No. 1, pp. 25-34(1997).
4. Al-Bastaki, N., “Removal of methyl orange dye and Na2SO4 salt from synthetic waste water using reverse osmosis,” Chemical Engineer and Processing, Vol. 43, pp. 1561-1567(2004).
5. Al-Malack, M. H. and G. K. Anderson, “Use of crossflow microfiltration in wastewater treatment,” Water Research, Vol. 31, No.12, pp. 3064-3072(1996).
6. Amjad, Z., “Reverse osmosis: membrane technology, water chemistry &industrial applications,” Van Nostrand Reinhold, New York (1993).
7. Aquino, S. F. and D. C. Stuckey, “Production of soluble microbial products (SMP) in anaerobic chemostats under nutrient deficiency,” Journal of Environmental Engineering, Vol. 129, No. 11, pp. 1007-1014(2003).
8. Aquino, S. F. and D. C. Stuckey, “Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds,” Water Research, Vol. 38, No. 2, pp. 255-266(2004).
9. Barker, D. J. and D. C. Stuckey, “Review of soluble microbial products (SMP) in wastewater treatment systems,” Water Research, Vol. 33, No. 14, pp. 3063-3082(1999).
10. Barker, D. J., S. M.L. Salvi, A. A.M. Langenhoff, and D. C. Stuckey, “Soluble microbial products in ABR treating low-strength wastewater,” Journal of Environmental Engineering, Vol. 126, No. 3, pp. 239-249(2000).
11. Bellona, C., J. E. Drewes, P. Xu, and G. Amy, “Factors affecting the rejection of organic solutes during NF/RO treatment─a literature review,” Water Research, Vol. 38, No. 12, pp. 2795-2809(2004).
12. Bick, A. and G. Oron, “Assessing the linkage between feed water quality and reverse osmosis membrane performance,” Desalination, Vol. 137, No. 1-3, pp. 141-148(2001).
13. Blöcher, C., M. Noronha, L. Fünfrocken, J. Dorda, V. Mavrov, H. D. Janke, and H. Chmiel, “Recycling of spent process water in the food industry by an integrated process of biological treatment and membrane separation,” Desalination, Vol. 144, No. 1-3, pp. 143-150(2002).
14. Bódalo, A., J. Gómez, E. Gómez, G. León, and M. Tejera, “Ammonium removal from aqueous solutions by reverse osmosis using cellulose acetate membranes,” Desalination, Vol. 184, No. 1-3, pp. 149-155(2005).
15. Bruggen, B. V., H. K. Jeong, A. D. Francis, G. Jerogen, and V. Carlo, “Influence of MF pretreatment on NF performance for aqueous solutions containing particles and an organic foulant,” Separation and Purification Technology, Vol. 36, No. 3, pp. 203-213(2004).
16. Buisson, H., P. Cote, M. Praderie, and M. Paillard, “Use of immersed membranes for upgrading wastewater treatment plants,” Water Science and Technology, Vol. 37, No. 9, pp. 89-95(1998).
17. Chaize, S. and A. Huyard, “Membrane bioreactor on domestic wastewater treatment sludge production and modeling approach,” Water Science and Technology, Vol.23, No. 7-9, pp. 1591-1600(1991).
18. Carlson, K. H. and G. L. Amy, “Importance of Soluble Microbial Products (SMPS) in biological drinking water treatment,” Water Research, Vol. 34, No. 4, pp. 1386-1396(2000).
19. Chang, J. S., L. J. Tsai, and S. Vigneswaran, “Experimental investigation of the effect of particle size distribution of suspended particles on microfiltration,” Water Science and Technology, Vol. 34, No. 9, pp. 133-140(1996).
20. Chang, S., T. A. Waite, A. I. Schäfer, and A. G. Fane, “Adsorption of trace steroid estrogens to hydrophobic hollow fiber membranes,” Desalination, Vol. 146, pp. 381-386(2002).
21. Cho, J., G. Amy, and J. Pellegrino, “Membrane filtration of natural organic matter: Initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes,” Water Research, Vol. 33, No. 11, pp. 2517-2526(1999).
22. Cicek, N., J. P. Franco, M. T. Suidan, and V. Urbain, “Using a membrane bioreactor to reclaim wastewater,” Journal / American Water Works Association, Vol. 90, pp. 105-113(1998).
23. Côte, P., H. Buisson, C. Pound, and G. Arakaki, “Immersed membrane activated sludge for the reuse of municipal wastewater,” Desalination , Vol.113, No. 2-3, pp. 189-196(1997).
24. Côte, P., M. Masini, and D. Mourato, “Comparison of membrane options for water reuse and reclamation,” Desalination, Vol. 167, No. 1-3, pp. 1-11(2004).
25. De Silva, D. G. V., V. Urbain, D. H. Abeysinghe, and B. E. Rittmann, “Advanced analysis of membrane-bioreactor performance with aerobic-anoxic cycling,” Water Science and Technology, Vol. 38, No. 4-5, pp. 505-512(1998).
26. Emanuelsson, E.A.C., J.-P. Arcangeli, and A.G. Livingston, “The anoxic extractive membrane bioreactor,” Water Research, Vol. 37, No. 6, pp. 1231-1238(2003).
27. Fan, X. J., V. Urbain, Y. Qian, and J. Manem, “Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment,” Water Science and Technology, Vol. 34, No. 1-2, pp. 129-136(1996).
28. Fan, L., J. L. Harris, F. A. Roddick, and N. A. Booker, “Influence of the characteristic of natural organic matter on the fouling of microfiltration membranes,” Water Research, Vol. 35, No. 18, pp. 4455-4463(2001).
29. Goosen, M. F. A., S. S. Sablani , H. Al-Hinai , S. Al-Obeidani , R. Al-Belushi, and D. Jackson, “Fouling of reverse osmosis and ultrafiltration membranes: A critical review,” Separation Science and Technology, Vol. 39, pp. 2261-2297(2004)
30. Holakoo, L., G. Nakhla, E. K. Yanful, and A. S. Bassi, “Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor,” Water Research, Vol. 40, No. 8, pp. 1531-1538(2006).
31. Jain, S. K., M. K. Purkait, and S. De, “Treatment of leather plant effluent by membrane separation processes,” Separation and Purification Technology, Vol. 41, pp. 3329-3348(2006).
32. Jarusutthirak, C. and G. Amy, “Role of soluble microbial products (SMP) in membrane fouling and flux decline,” Environmental Science and Technology, Vol. 40, pp. 969-974(2006).
33. Kaiya, Y., Y. Itoh, K. Fujita, and S. Takizawa, “Study on materials in the membrane treatment process for potable water,” Desalination, Vol. 106, No. 1-3, pp. 71-77(1996).
34. Karakulski, K. and A. W. Morawski, “Treatment of spent emulsion from a cable factory by an integrated UF/NF membrane system,” Desalination, Vol. 149, No. 1-3, pp. 163-167(2002).
35. Košutic, K. and B. Kunst, “Removal of organic from aqueous solutions by commercial RO and NF membranes of characterized porosities,” Desalination, Vol. 142, No. 1, pp. 47–56(2002).
36. Liang, S., C. Liu, and Lianfa Song, “Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential,” Water Research, Vol. 41, No. 1, pp. 95-101(2007).
37. Logan, B. E. and Qing Jiang, “Molecular size distribution of dissolved organic matter,” Journal of Environmental Engineering, Vol. 116, No. 6, pp.1046-1062(1990).
38. López-Ramírez, J. A., D. S. Márquez, and J. M. Q. Alonso, “Comparison studies of feedwater pre-treatment in a reverse osmosis pilot plant,” Desalination, Vol. 144, No. 1-3, pp. 347-352(2002).
39. López-Ramírez, J. A., S. Sahuquillo, D. Sales, and J.M. Quiroga, “Pretreatment optimization studies for secondary effluent reclamation with reverse osmosis,” Water Research, Vol.37, No. 5, pp.1177-1184(2003).
40. Lu, S.G., T. Imai, M. Ukita, M. Sekine, T. Higuchi, and M. Fukagawa, “A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products,” Water Research, Vol. 35, No. 8, pp. 2038-2048(2001).
41. Melin, T., B. Jefferson, D. Bixio, C. Thoeye, W. De Wilde, J. De Koning,J. van der Graaf, and T. Wintgens, “Membrane bioreactor technology for wastewater treatment and reuse,” Desalination, Vol. 187, No. 1-3, pp. 271–282(2006).
42. Mozia, S., M. Tomaszewska, and A. W. Morawski, “Studies on the effect of humic acids and phenol on adsorption ─ ultrafiltration process performance,” Water Research, Vol. 39, No. 2-3, pp. 501-509(2005).
43. Mukherjee, P. and A. K. Sengupta, “Ion exchange selectivity as a surrogate indicator of relative permeability of ions in reverse osmosis processes,” Environmental Science Technology, Vol. 37, No. 7, pp. 1432-1440(2003).
44. Mukherjee, P. and A. K. Sengupta, “Some observations about electrolyte permeation mechanism through reverse osmosis and nanofiltraion membranes,” Journal of Membrane Science, Vol. 278, No. 1-2, pp. 301-307(2006)..
45. Munir, C., “Ultrafiltration and microfiltration handbook,” Technomic, Lancaster(1998).
46. Nicolaisen, B., “Developments in membrane technology for water treatment,” Desalination, Vol. 153, No. 1-3, pp. 355–360(2002).
47. Noguera D. R., N. Araki, and B. E. Rittmann, “Soluble microbial products(SMP) in anaerobic chemostats,” Biotechnology Bioengineering, Vol. 44, No. 9, pp. 1040-1047(1994).
48. Nyström, M., A. Pihlajamäki, R. Liikanen, and M. Mänttäri, “Influence of process conditions and membrane/particle interaction in NF of Wastewaters,” Desalination, Vol. 156, No. 1-3, pp. 379-387(2003).
49. Park, N., B. Kwon, I. S. Kim, and J. Cho, “Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters,” Journal of Membrane Science, Vol. 258, No. 1-2, pp. 43-54(2005).
50. Paul, D. R., “Reformulation of the solution-diffusion theory of reverse osmosis,” Journal of Membrane Science, Vol. 241, No. 2, pp. 371-386(2004).
51. Peng, W., I. C. Escobar, and D. B. White, “Effects of water chemistries and properties of membrane on the performance and fouling ─ a model development study,” Journal of Membrane Science, Vol. 238, No. 1-2 pp. 33-46(2004).
52. Qin, J. J., M. H. Oo, M. N. Wai, H. Lee, S. P. Hong, J.E. Kim, Y. Xing, and M. Zhang, “Pilot study for reclamation of secondary treated sewage effluent,” Desalination, Vol.171, No. 3, pp. 299-305(2004).
53. Qin, J. J., K. A. Kekre, G. Tao, M. H. Oo, M. N. Wai, T. C. Lee, B. Viswanath, and H. Seah, “New option of MBR-RO process for production of NEWater from domestic sewage,” Journal of membrane science, Vol. 272, No. 1-2, pp.70-77(2006).
54. “Reverse Osmosis and Nanofiltration,” American Water Works Association, Denver(1999).
55. Richard, W. B., “Membrane technology and applications,” John Wiley & Sons, New York(2004).
56. Rittmann, B. E. and P. L. McCarty, “Environmental Biotechnology: Principle and Applications,” McGraw-Hill, Boston(2001).
57. Shin, H.-S. and S.-T. Kang, “Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times,” Water Research, Vol. 37, No. 1, pp. 121-127(2003).
58. Suthanthararajan, R., E. Ravindranath, K. Chitra, B. Umamaheswari, T. Ramesh, and S. Rajamani, “Membrane application for recovery and reuse of water from treated tannery wastewater,” Desalination, Vol. 164, No. 2, pp. 151-156(2004).
59. Trouve, E., V. Urbain, and J. Manem, “Treatment of municipal wastewater by a membrane bioreactor: Results of a semi-industrial pilot-scale study,” Water Science and Technology, Vol. 30, No. 4, pp. 151-157(1994).
60. Ueda, T., K. Hata, and K. Kikuoka, “Treatment of domestic sewage from rural settlements by a membrane bioreactor,” Water Science and Technology, Vol.34, No. 9, pp. 189-196(1996).
61. Vrijenhoek, E. M., S. Hong, and M. Elimelech, “Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes,” Journal of Membrane Science, Vol. 188, No. 1, pp. 115-128(2001).
62. Wijmans, J. G. and R. W. Barker, “The solution-diffusion model: a review,” Journal of Membrane Science, Vol. 107, pp. 1-21(1995).
63. Williams, M. E., J. A. Hestekin, C. N. Smothers, and D. Bhattacharyya, “Separation of organic pollutants by reverse osmosis and nanofiltration membranes: mathematical models and experimental verification,” Industrial and Engineering Chemistry Research, Vol. 38, pp. 3683-3695(1999).
64. Wintgens, T., T. Melin, A. Schäfer, S. Khan, M. Muston, D. Bixio, and C. Thoeye, “The role of membrane processes in municipal wastewater reclamation and reuse,” Desalination, Vol.178, No. 1-3, pp.1-11(2005).
65. Xu, P., J. E. Drewes, T. Kim, C. Bellona, and G. Amy, “Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications,” Journal of Membrane Science, Vol. 279, No. 1-2, pp. 165-175(2006).
66. Yeom, C. K., S. H. Lee, and J. M. Lee, “Effect of the ionic characteristics of anionic solutes in reverse osmosis,” Journal of Membrane Science, Vol. 169, No. 2, pp. 237-247(2000).
67. Yeom, C. K., J. H. Choi, D. S. Suh, and J. M. Lee, “Analysis of the permeation and separation of electrolyte solutions through reverse osmosis charge membranes,” Separation science and Technology, Vol. 37, No. 6, pp. 1241-1255(2002).
68. Yoon, Y., G. Amy, J. Cho, and N. Her, “Effects of retained natural organic matter(NOM) on NOM rejection and membrane flux decline with nanofiltration and ultrafiltration,” Desalination, No. 3, Vol. 173, pp. 209-221(2005).
69. Zheng, X. and J. Liu, “Dyeing and printing wastewater treatment using a membrane bioreactor with a gravity drain,” Desalination, Vol.190, No. 1-3, pp. 277–286(2006).
70. 「紡織染整業工業用水效率提升及回收再利用技術手冊」,經濟部工業局(2003)。
71. 李佩玲,「極微薄膜技術處理染料水溶液之研究」,國立台灣科技大學化學工程研究所碩士論文(2003)。
72. 「塑膠製品業工業用水效率提升及回收再利用技術手冊」,經濟部工業局(2003)。
73. 「新竹工業區廢水回收再利用規劃」,經濟部水利署水利規劃試驗所(2003)。
74. 「廢水薄膜處理技術應用與推廣手冊」,經濟部工業局(2000)。
75. 鄭華安,「工業區廢水二級處理放流水回收再利用技術研究」,國立成功大學環境工程研究所碩士論文(2001)。
76. 林何印,「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,國立中央大學環境工程研究所碩士論文(2005)。
77. 「工業廢水逆滲透處理」,經濟部工業局(1994)。
78. 許惠如,「以電滲透及流線電位決定薄膜之界達電位」,中原大學化學工程研究所碩士論文(2001)。
79. 周珊珊,「淤泥指數(SDI)的測定方法及在淨水處理上的應用」,自來水會刊,第二十卷,第三期,第16-21頁(2001)。
80. 王潔瑩,「以氨氣及乙炔/氨氣電漿改質法提昇聚四氟乙烯膜面親水性之研究」,中原大學化學工程研究所碩士論文(2004)。
81. 蔡美純,「從水中天然有機物官能基變化探討前臭氧/粒狀活性碳反應機制」,東海大學環境科學研究所碩士論文 (2002)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2007-11-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明