博碩士論文 943207024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.191.240.243
姓名 周登科(Teng-Ko Chou)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 全場相位式表面電漿共振生醫感測器
(Surface plasmon resonance bio-sensor with full-field phase detection)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 波長調制外差散斑干涉術之研究
★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究★ 複合式長行程精密定位平台之研究
★ 紅外波段分光之全像集光器應用★ 太陽光譜分光器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以偏振干涉術結合表面電漿共振技術,配合CCD擷取影像,得到四個相位兩兩相差90度的光強度訊號,再以類似四步移相的數值方法,量測出一整面硫醇(Thiol)分佈的全場相位資訊。本解相系統的相位解析度為0.8度,整體系統對折射率的靈敏度為1.6X10-5RIU(Refractive Index Unit, RIU)。此表面電漿共振儀在實驗上可以量測出折射率差0.0001RIU的磷酸鹽緩衝液(Phosphate-Buffered Saline, PBS)。另外可以分辦出濃度為20mM及2mM的硫醇在3x3mm2範圍裡的相位變化。本系統具有即時、定量、高靈敏度等優點,且可應用於微小生物分子鍵結反應的檢測領域上。若能結合不同的生物分子應用於陣列晶片上,將能達到大量平行篩檢的目的。
摘要(英) A full-field phase detection system for surface plasmon resonance (SPR)
bio-sensor is presented. In our full-field system, we combine a method of the
polarization interference for phase detection, SPR technique and CCD Video
camera. By means of a similar algorithm phase-shifting interferometry, the
distribution of SPR bio-sensor was obtained. We have successfully detected the
refractive index variation of PBS (phosphate-buffered saline) with 0.0001RIU
(Refractive Index Unit), and measured the thiol(C8H14O2S2) of 20mM and 2mM
within 3×3 mm2 full field range. The resolution of phase detection is about 0.8
degree, and the measurement sensitivity of refractive index is about 1.6×10-5
RIU. This system has advantages, such as immediately, ration, high sensitivity,
etc., it can be applied to the small biological molecule interaction. If can
combine different biological members to apply to the array chip, it can be a
large number of high throughput screening.
關鍵字(中) ★ 偏振干涉術
★ 表面電漿共振技術
★ 全場相位
關鍵字(英) ★ Polarization Interferometry
★ Surface Plasmon Resonance
★ full field phase detection
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XI
符號說明 XII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機與目的 3
1-4論文架構 4
第二章 表面電漿共振 6
2-1表面電漿共振原理 6
2-2激發表面電漿波的方式 11
2-3反射光強度與相位數學推導 15
2-4小結 21
第三章 解相位理論與架構 22
3-1解相位架構 22
3-2 瓊斯矩陣計算理論分析 24
3-3全場折射率分析模擬 26
3-4系統校正 28
3-5利用空氣全反射驗證解相系統 33
3-6小結 35
第四章 系統設計與架構 36
4-1感測器參數設計 36
4-2機構設計 42
4-3整體架構 47
4-4程式設計 50
4-5小結 53
第五章 實驗結果與討論 54
5-1 實驗準備 54
5-2 實驗一:液體切換量測 59
5-3 實驗二:不同濃度之硫醇陣列點量測 61
5-4 實驗三:蛋白質與硫醇鍵結 65
5-5 誤差來源與分析 70
5-6 系統靈敏度分析 72
5-7 小結 73
第六章 結論 74
參考文獻 75
附錄一 作者相關著作 80
附錄二 儀器參展之DM 81
參考文獻 [1] 安毓英、曾小東,光學感測與量測,五南圖書,台北市,2004年。
[2] 林宸生、陳德請,近代光電工程導論,全華圖書,台北市,民國93年3月
[3] K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” APPLIED OPTICS, Vol.27, No.6, P1160-1163, 1988.
[4] A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio-and chemical-sensors,” OPTICS COMMUNICATION, Vol.150, No.1, P5-8, 1998.
[5] S. Y. Rabbany, W. J. Lane, W. A. Marganski, A. W. Kusterbeck, and F. S. Ligler J IMMUNOL METHODS, P69–77, 2000.
[6] J. Homola, “Present and future of surface plasmon resonance biosensors,” ANALYTICAL AND BIOANALYTICAL CHEMISTRY, Vol.377, No.3, P528-529, 2003.
[7] H. E. D. Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, and J. Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” OPTICS COMMUNICATION, Vol 82, No.5, P425-432, 1991.
[8] A. A. Kolomenskii, P. D. Gershon, and H. A. Schuessler, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” APPLIED OPTICS, Vol.36, No.25, P6539-6547, 1997.
[9] S. Shen, T. Liu, and J. Guo, “Optical phase-shift detection of surface plasmon resonance,” APPLIED OPTICS, Vol.37, No.10, P1747-1751, 1998.
[10] J. Guo, Z. Zhu, and W. Deng, “Small-angle measurement based on surface-plasmon resonance and the use of magneto-optical modulation,” APPLIED OPTICS, Vol.38, No.31, P6550-6555, 1999.
[11] D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques,” CURRENT OPTINION IN COLLOIDS AND INTERFACE SICENCE, Vol.4, No.5, P273-280, 1999.
[12] R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. B. Tendler, “Surface plasmon resonance analysis of dynamic biological interactions with biomaterials,” BIOMATERIALS, Vol.21, No.18, P1823-1835, 2000.
[13] Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” OPTICS LETTERS, Vol. 30, N0.12, P1488-1490, 2005.
[14] K. Johansen, H. Arwin, I. Lundstrom, and B. Liedberga, “Imaging surface plasmon resonance sensor based on multiple sensitivity considerations,” AMERICAN INSTITUTE OF PHYSICS, Vol.71, No.9, P3530-3538, 2000.
[15] D. G. Myszka, “Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors,” CURRENT OPINION IN BIOTECHNOLOGY, Vol.8, No.1, P50-57, 1997.
[16] V. Silin and A Plant, “Biotechnological applications of surface plasmon resonance,” TRENDS IN BIOTECHNOLOGY, Vol.15, No.9, P353-359, 1997.
[17] J. W. Chung, R. Bernhardt, and J. C. Pyun, “Sequential analysis of multiple analytes using a surface plasmon resonance(SPR) biosensor,” JOURNAL OF IMMUNOLOGICAL METHODS, Vol.311, No.1, P178-188, 2006.
[18] B. P. Nelson, T. E. Grimsrud, M. R. Liles, R. M. Goodman, and R. M. Corn, “Surface Plasmon Resonance Imaging Measurements of DNA and RNA Hybridization Adsorption onto DNA Microarrays,” ANALYTICAL CHEMISTRY, Vol.73, P4177-4183, No.1, 2001.
[19] S. Toyama, N. Doumae, A. Shoji, and Y. Ikariyama, “Design and fabrication of a waveguide-coupled prism device for surface plasmon resonance sensor,” SENSORS AND ACTUATORS B: CHEMICAL, Vol.65, No.1, P32-34, 2000.
[20] S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” APPLIED OPTICS, Vol.42, No.34, P1, 2003.
[21] S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, “Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles,” OPTICS LETTERS, Vol.29, No.12, P1390-1392, 2004.
[22] S. Otsuki, K. Tamada, and S. Wakida, “Wavelength-scanning surface plasmon resonance imaging,” APPLIED OPTICS, Vol.44, No.17, P3468-3472, 2005.
[23] W. C. Kuo, C. Chou, and H. T. Wu, “Optical heterodyne surface-plasmon resonance biosensor,” OPTICS LETTERS, Vol.28, No.15, P1329-1331, 2003.
[24] S. F. Joe, L. Z. Hsieh, L. B. Chang, C. C. Hsieh, and C. M. Wu, “Heterodyne Interferometric Surface Plasmon Resonance Biosensor,” JOURNAL OF MEDICAL AND BIOLOGICA ENGINEERING,” Vol.26, No.4, P149-153, 2006.
[25] J. Guo, Z. Zhu, W. Deng, and S. Shen, “Angle measurement using surface- plasmon-resonance heterodyne interferometry:a new method,” OPTICAL ENGINEERING, Vol.37, No.11, P2998-3001, 1998.
[26] S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” SENSORS AND ACTUATORS, Vol.3, No.5, P187-191, 1996.
[27] S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou, and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis,” BIOMEDICAL OPTICS, Vol.10, No.3, P34005, 2005.
[28] N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan, and B. K. A. Ngoi, “Large surface profile measurement with instantaneous phase-shifting interferometry,” OPTICAL ENGINEERING, Vol.42, No.2, P367-372, 2003.
[29] N. Destouches, H. Giovannini, and M. Lequime, “Interferometric measurement of the phase of diffracted waves near the plasmon resonances of metallic gratings,” APPLIED OPTICS, Vol.40, No.31, P5575-5583, 2001.
[30] S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” APPLIED OPTICS, Vol.42, No.34, P6905-6910, 2003.
[31] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” ZEITSCHRIFT FUR PHYSIK A HADRONS AND NUCLEI, Vol.216, No.4, P398-410, 1968.
[32] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” SENSORS AND ACTUATOR B: CHEMICAL, Vol.54, No.1, P3-15, 1999.
[33] J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” SENSORS AND ACTUATORS B: CHEMICAL, Vol.54, No.1, P16-24, 1999.
[34] M. H. Chiu, J. Y. Lee, and D. C. Su, “Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry,” APPLIED OPTICS, Vol.36, No.13, P2936-2939, 1997.
[35] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell , R. R. Bell , R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” APPLIED OPTICS, Vol.22, No.7, P1099-1120, 1983.
[36] Y. M. Bae, B. K. Oh, W. Lee, W. H. Lee, and J. W. Choi, “Study on orientation of immunoglobulin G on protein G layer,” BIOSENSORS AND BIOELECTRONICS, Vol.21, No.1, P103-110, 2005.
指導教授 李朱育(Ju-Yi Lee) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明