博碩士論文 943208005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:100.24.122.228
姓名 彭彥凱(Yen-kai Peng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 不同型式光纖與集光器搭配之效率測試
(Test of the Efficiency of the Concentrator with Different Types of Optical Fiber)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 高解析熱氣泡式噴墨頭墨滴成形觀測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 太陽集光器在太陽能應用佔有重要的地位,近年來它的應用朝向將光經由光纖傳導至室內再轉換成其他形式能量,這種方式有其彈性但其實用性尚待評估。因此本文探討使用拋物面碟式集光器搭配光纖,將集光器聚焦的光經由光纖傳輸到遠端的可行性。
光纖—集光器的主要兩個光學元件為光纖與反射鏡組(做為集光器),反射鏡組包含拋物面主反射鏡與平面二次反射鏡。目前光纖的光學特性和材料性質與集光器的特性在搭配時會有限制,特別是主反射鏡的直徑、曲率大小與光纖數值孔徑等參數,此外操作溫度亦會影響輸出功率,這些因素都會影響光纖的光傳輸效率。因此本文使用兩種反射鏡組搭配三種不同形式的單光纖(塑膠和石英)與兩種石英光纖束,光纖的長度可達150 cm。由量測與估算的光傳輸功率計算光傳輸效率。在單光纖形式中,有緩衝層石英光纖的傳輸效率最好,光纖傳輸長度為120 cm的光傳輸效率為77%-80%。而光纖束目前製作技術不理想,單光纖製作成光纖束後,光強度便會大幅下降。本文亦對石英光纖的輸出功率受溫度效應作探討,在低操作溫度範圍(25oC - 95oC),發現此溫度範圍內石英光纖輸出功率穩定。
摘要(英) Solar concentrator is an important device in the application of solar energy, and one of its applications is utilize the optical fiber to transport the concentrated light into the indoor for converting the solar energy to other form of energy. Such arrangement provides flexibility and yet its practical implementation remains to be investigated. Thus, this work is a feasibility study of transmitting the concentrated light from a concentrator through the optical fiber.
Present arrangement of the fiber-concentrator consisted of a parabolic dish (the primary mirror) and a flat secondary mirror, and various forms of optical fiber (plastic and quartz) up to the length of 150 cm. There is some mismatch between the optical and material characteristics of fibers and the mirrors used in the concentrator, especially the diameter and the curvature of primary mirror, and the numerical aperture of the fiber. In addition, the operating temperature will affect the output power from the fiber. This study uses two types of primary mirror, three types of single fiber and two modes of quartz-fiber bundle. The transmitting efficiency is calculated from both the measured and predicted light power through the light path of the concentrator-fiber. In the case of single fiber, the quartz-fiber with the buffer layer has best efficiency; it’s efficient is 77-80% for a 120-cm length of transmitting length. Due to imperfect fabrication of the fiber bundle, the light intensity of the fiber bundle drop significantly compare with that of the single fiber. Finally, the measured light power was stable in the range of low operating temperature (25oC - 95oC).
關鍵字(中) ★ 傳輸效率
★ 功率量測
★ 光纖束製作
★ 太陽集光器
關鍵字(英) ★ power measurement
★ solar concentrator
★ fabrication of fiber bundle
★ transmitting efficiency
論文目次 中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
符號說明 X
第一章 緒論 1
1.1研究動機 1
1.2集光器與光纖介紹 5
1.3文獻回顧 7
1.4研究目的 8
第二章 光纖基礎理論 16
2.1全反射現象與光纖構造 16
2.2光纖數值孔徑 17
2.3光纖傳遞能量的損失 18
2.4光纖材料與耐熱 21
第三章 集光系統設計與製作 25
3.1反射鏡的選擇和配置 25
3.2提高光纖數值孔徑與能量傳送效率的方法 27
3.2.1 光纖燒結 27
3.2.2光纖去除緩衝層 30
3.3 製作光纖束 31
3.4 實驗步驟與方法 33
第四章 結果與討論 44
4.1系統效率與集光率 44
4.1.1中間有開口的主反射鏡系統 44
4.1.2無開口的主反射鏡系統 49
4.2溫度對光纖傳送效率的影響 51
4.3 系統效率與集光率比較 52
4.4 集光系統的改進 56
第五章 結論與建議 72
5.1 結論 72
5.2 建議 74
參考文獻 76
參考文獻 Anto´n I., D. Silva, G. Sala, A.W. Bett, G. Siefer, I. Luque-Heredia and T. Trebst, The PV-FIBRE concentrator: a system for indoor operation of 1000X MJ solar cells, Prog. Photovolt. Res. Appl. (in press), 2007.
Bak T., J. Nowotny, M. Rekas and C.C. Sorrell, Photoelectrochemical hydrogen generation from water using solar energy: Materials-related perspective, Int. J. Hydrogen Energy 27, pp.991-1022, 2002.
Bailey D. and E. Wright, Practical Fiber Optics, Elsevier, 2003.
Cariou J.M., J. Dugas and L. Martin, Transport of solar energy with optical fibers, Solar Energy 29(5), pp. 397-406, 1982.
Ciamberlini C., F. Francini, G. Longobardi, M. Piattelli and P. Sansoni, Solar system for exploitation of the whole collected energy, Optics and Lasers in Engineering 39, pp. 233–246, 2003.
Feuermann D. and J.M. Gordon, Solar fiber-optical mini-dishes: a new approach to the efficient collection of sunlight, Solar Energy 65(3), pp. 159–170, 1999.
Feuermann D. and J.M. Gordon, High-concentration photovoltaic designs based on miniature parabolic dishes, Solar Energy 70(5), pp. 423–430, 2001.
Feuermann D., J.M. Gordon and M. Huleihil, Light leakage in optical fibers: experimental results, modeling and the consequences for solar concentrators, Solar Energy 72(3), pp. 195–204, 2002a.
Feuermann D., J.M. Gordon and M. Huleihil, Solar fiber-optic mini-dish concentrators: First experimental results and field experience, Solar Energy 72(6), pp. 459–472, 2002b.
Gordon J.M., D. Feuermann, M. Huleihil, S. Mizrahi and R. Shaco-Levy, Solar surgery, J. Applied Physics 93(8), pp.4843-4851, 2003.
Hecht E., Optics, Addison Wesley, 2002.
Jaramillo A., J.A. del R´ıo and G Huelsz, A thermal study of optical fibres transmitting concentrated solar energy, J. Phys. D: Appl. Phys. 32, pp.1000–1005, 1999.
Jaramillo A., G. Huelsz and J.A. del R´ıo, A theoretical and experimental thermal study of SiO2 optical fibres transmitting concentrated radiative energy, J. Phys. D: Appl. Phys. 35, pp.95–102, 2002.
Kribus A., O. Zik and J. Karni, Optical fiber and solar power generation, Solar Energy 68, pp. 405–416, 2000.
Khatri N., M. Brown and F. Gerner, Using fiber optics to tap the sun’s power, Int. J. Heat Mass Transfer 20, pp. 771-781, 1993.
Kalogirou S.A., Solar thermal collectors and applications, Progress in Energy and Combustion Science 30, pp.231–295, 2004.
Licht S., Solar water splitting to generate hydrogen fuel: photothermal electrochemical analysis, J. Phys. Chem. 107, pp.4253-4260, 2003a.
Licht S., L. Halperin, M. Kalina and N. Halperin, Electrochemical potential tuned solar water splitting, Chem. Communication, pp.3006-3007, 2003b.
Licht S., Solar water splitting to generate hydrogen fuel–a photothermal electrochemical analysis, Int. J. Hydrogen Energy 30, pp.459-470, 2005.
Liang D., L.F. Monteiro, M.R. Teixeira, M.L. F. Monteiro and M. Collares-Pereira, Fiber-optic solar energy transmission and concentration, Solar Energy Materials and Solar Cells 54, pp.323-331, 1998.
Nowotny J., C.C. Sorrell, L.R. Sheppard and T. Bak, Solar-hydrogen: Environmentally safe fuel for the future, Int. J. Hydrogen Energy 30, pp.521-544, 2005.
Ning X., R. Winston and J. O'Gallagher, Dielectric totally internally reflecting concentrators, Applied Optics 26(2), pp.300-305, 1987.
Rabl A. and R. Winston, Ideal concentrators for finite sources and restricted exit angles, Applied Optics 15(11), pp.2880-2883, 1976.
Shiue S.T. and T.Y. Shen, Effect of thermal stresses on the static fatigue of double-coated optical fibers, Materials Chemistry and Physics 89, pp.159–163, 2005.
Welford W.T., High Collection Nonimaging Optics, University of London, London, 1989.
白中和,光纖通信技術,建興出版社,台北縣,1998。
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2007-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明