博碩士論文 943208007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:34.207.78.157
姓名 吳育丞(Yu-Cheng Wu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 Mn、 Ti/Cr 比與熱處理對 Ti-V-Cr 儲氫合金結構與特性之影響
(Effect of Mn addition﹐Ti/Cr ratio and heat treatment on structural and hydrogen storage characteristics of Ti-V-Cr alloys)
相關論文
★ 合金元素(Ce,Al,Sn)添加對LaNix儲氫合金 吸放氫特性之影響★ 微量LaNi5合金與機械球磨對Mg3MnNi2合金電化學特性之影響
★ 鈧、鋯與熱處理對Al-4.5Mg-0.8Mn合金性質之影響★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響★ 熱力微照射製作絕緣層矽晶材料之研究
★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究
★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究
★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究
★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響★ 微量Sc對A356鑄造鋁合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗將研究 Ti-V-Cr BCC 相儲氫合金的結構與吸放氫特性,藉由 Mn 元素的添加、改變 Ti/Cr 比與熱處理製程等方面探討,以期能了解各參數與吸放氫間關係。結果顯示鑄態 Ti33V33Cr34 合金有優良的活化速率,在第一次活化之初始 10 min 時,吸氫量即達最大吸氫量的 95 %。當 Mn 的添加不超過 15 at.% 時,有助於提昇鑄態 Ti33V33Cr(34-x)Mnx 合金放氫量,其 Ti33V33Cr19Mn15 合金最佳有效放氫量為 2.48 wt.%。降低鑄態 Ti(33-y)V33Cr(19+y)Mn15 合金中的 Ti/Cr 比可提高放氫平台壓,但也伴隨著最大吸氫量的減少。當 Ti31V33Cr21Mn15 合金在 1200 ℃ 下經 10 h 之熱處理,有效提高放氫平台壓並減少 PCI 平台斜率。
摘要(英) Effect of Mn addition, Ti/Cr ratio and heat treatment on structural and hydrogen storage characteristics of Ti-V-Cr alloys were investigated. It was found that the hydrogen absorption rate of Ti33V33Cr34 alloy was considerably fast and more than 95 % of the hydrogen was absorbed within 10 min. The hydrogen desorption capacity was improved when the Mn contained less than 15 at.%. The best effective hydrogen storage capacity of Ti33V33Cr19Mn15 alloy was 2.48 wt.%. The plateau pressure increased with Ti/Cr ratio decreasing for the Ti(33-y)V33Cr(19+y)Mn15 alloys, however, the maximum hydrogen storage capacity decreased. The Ti31V33Cr21Mn15 alloy increased the plateau pressure and decreased the plateau slope after annealing at 1200 ℃ for 10 h.
關鍵字(中) ★ Ti-V-Cr-Mn 合金
★ 熱處理
★ 儲氫合金
★ BCC 相
關鍵字(英) ★ Annealing treatment
★ Ti-V-Cr-Mn alloys
★ BCC phase
★ Hydrogen storage alloys
論文目次 目錄......................................................I
圖目錄..................................................III
表目錄....................................................V
第一章 前言..............................................1
第二章 文獻回顧..........................................2
2.1 儲氫合金儲放氫基本原理...........................2
2.2 儲氫合金發展簡介.................................4
2.2.1 儲氫合金種類介紹..........................4
2.2.2 BCC 固溶體儲氫合金........................6
2.3 儲氫合金活化性能的改善..........................12
2.3.1 改變合金的表面性質.......................12
2.3.2 改變合金的基地性質.......................13
2.4 研究背景與目的..................................14
第三章 研究方法及進行步驟...............................15
3.1 實驗流程........................................15
3.2 儲氫合金之製備..................................16
3.3 微結構分析......................................18
3.3.1 X 光繞射分析.............................18
3.3.2 電子微探儀分析...........................18
3.3.3 微差掃描熱分析...........................18
3.4 熱處理..........................................19
3.5 儲氫合金之儲放氫基本特性測試....................19
3.5.1 活化速率測試.............................19
3.5.2 儲放氫測試...............................20
第四章 結果與討論.......................................22
4.1 Ti33V33Cr34 合金之結構與吸放氫性能.................22
4.2 Mn 添加對 Ti33V33Cr(34-x)Mnx 合金吸放氫性能之影響.....27
4.3 Ti/Cr 比對 Ti(33-y)V33Cr(19+y)Mn15 合金吸放氫性能之影響.35
4.4 熱處理對 Ti31V33Cr21Mn15 合金 PCI 平台斜率之影響....39
第五章 結論.............................................42
第六章 未來研究方向.....................................43
參考文獻.................................................44
附錄.....................................................48
參考文獻 1. 曹芳海, 趙令裕, 周桂蘭, “經濟部能源局能源報導”,
pp.5-7 (2006 年10 月).
2. 胡子龍, “儲氫材料”, 化學工業出版社, pp.20-21,49
(2002).
3. E. David, “An overview of advanced materials for
hydrogen storage”, J . Mater. Process. Tech.,
Vol.162-163, pp.169-177 (2005).
4. V.K. Sinha, W.E. Wallace, “The hyperstoichiometric
ZrMn1+xFe1+y–H2 system II : hysteresis effect”, J.
Less-Common Met., Vol.91, pp.239-249 (1983).
5. G. Sandrock , “A panoramic overview of hydrogen
storage alloys from a gas reaction point of view”,
J. Alloys Comp., Vol.293-295, pp.877-888 (1999).
6. J.H.N. Vucht, F.A. Kuijpers, H.C.A.M. Bruning,
“Reversible room–temperature absorption of large
quantities of hydrogen by intermetallic compounds”,
Philips Res. Rep., Vol.25, pp.133-140 (1970).
7. J.J. Reilly, R.H. Wiswall, “The reaction of hydrogen
with alloys of magnesium and nickel and the formation
of Mg2NiH4”, Inorg. Chem., Vol.7, pp.2254-2256
(1968).
8. J.J. Reilly, R.H. Wiswall, “Formation and properties
of iron titanium hydride”, Inorg. Chem., Vol.13,
pp.218-222 (1974).
9. L. Schlapbach, A. Züttel, “Hydrogen–storage
materials for mobile applications”, Nature ,
Vol.414, pp.353-358 (2001).
10. E. Akiba, H. Iba, “Hydrogen absorption by Laves
phase related BCC solid solution”, Intermetallics,
Vol.6, pp.461-470 (1998).
11. J.J. Reilly, R.H. Wiswall, “Higher hydrides of
vanadium and niobium”, Inorg. Chem., Vol.9, pp.1678-
1682 (1970).
12. H. Yukawa, M. Takagi, A. Teshima, M. Morinaga,
“Alloying effects on the stability of vanadium
hydrides”, J. Alloys Comp., Vol.332, pp.105-109
(2002).
13. S. Ono, K. Noura, Y. Ikeda, “The reaction of
hydrogen with alloys of vanadium and titanium”, J.
Less–Common Met., Vol.72, pp.159-165 (1980).
14. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, “Enhancement of
hydrogen storage capacity of Ti–V–Cr–Mn BCC phase
alloys”, J. Alloys Comp., Vol.372, pp.272-277 (2004).
15. Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, “Hydrogen
storage properties of V30–Ti–Cr–Fe alloys”, J.
Alloys Comp., Vol.427, pp.110-114 (2007).
16. M. Okada, T. Kuriiwa, T. Tamura, H. Takamura, A.
Kamegawa, “Ti–V–Cr b.c.c. alloys with high protium
content”, J. Alloys Comp., Vol.330-332, pp.511-516
(2002).
17. D.S. dos Santosa, M. Bououdinab, D. Fruchartc,
“Structural and thermodynamic properties of the
pseudo-binary TiCr2-xVx compounds with 0.0 x 1.2”,
J. Alloys Comp., Vol.340, pp.101-107 (2002).
18. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, “The
hydrogen storage characteristics of Ti–Cr–V
alloys”, J. Alloys Comp., Vol.288, pp.294-298 (1999).
19. Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, T.
Mingjing, “Effect of Al on hydrogen storage
properties of V30Ti35Cr25Fe10 alloy”, J. Alloys
Comp., Vol.426, pp.253-255 (2006).
20. X.B. Yu, J.Z. Chen, Z.Wu, B.J. Xia, N.X. Xu, “Effect
of Cr content on hydrogen storage properties for Ti–
V–based BCC-phase alloys”, Int. J. Hydrogen Energy,
Vol.29 , pp.1377-1381 (2004).
21. R. Guo, L.X. Chen, Y.Q. Lei, S.Q. Li, Y.W. Zeng, Q.D.
Wang, “Phase structures and electrochemical
behaviors of V2.1TiNi0.5Hf0.05Crx (x= 0–0.152)
hydrogen storage alloys”, J. Alloys Comp., Vol.358,
pp.223-227 (2003).
22. C.Y. Seo, J.H. Kim, P.S. Lee, J.Y. Lee, “Hydrogen
storage properties of vanadium-based b.c.c. solid
solution metal hydrides”, J. Alloys Comp.,
Vol.348, pp.252-257 (2003).
23. S.W. Cho, C.S. Han, C.N. Park, E. Akiba, “Hydrogen
storage characteristics of Ti–Zr–Cr–V alloys”, J.
Alloys Comp., Vol.289, pp.244-250 (1999).
24. T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T.
Kuriiwa, A. Kamegawa, H. Takamura, M. Okada,
“Protium absorption properties of Ti–V–Cr–Mn
alloys with a b.c.c. structure”, J. Alloys Comp.,
Vol.330-332, pp.522-525 (2002).
25. M. Martin, C. Gommel, C. Borkhart, E. Fromm,
“Absorption and desorption kinetics of hydrogen
storage alloys”, J. Alloys Comp., Vol.238, pp.193-
201 (1996).
26. X.B. Yu, Z. Wu, B.J. Xia, N.X. Xu, “Improvement of
activation performance of the quenched Ti–V–based
BCC phase alloys”, J. Alloys Comp., Vol.386, pp.258-
260 (2005).
27. D.Y. Yan, Y.M. Sun, S. Suda, “Surface properties of
the F–treated ZrTiVNi alloy”, J. Alloys Comp.,
Vol.231, pp.387-391 (1995).
28. M. Matsuoka, E. Nakayama, F. Uematsu, Y. Yamamoto, C.
Iwakura, “Activation mechanism of
Ti0.5Zr0.5Ni1.3V0.7Mn0.1Cr0.1 electrode in nickel–
hydride batteries”, Electrochim. Acta, Vol.46,
pp.2693-2697 (1995).
29. T. Mouri, H. Iba, “Hydrogen–absorbing alloys with a
large capacity for a new energy carrier”, Mater.
Sci. Eng. A, Vol.329-331, pp.346-350 (2002).
30. T. Kabutomori, H. Takeda, Y. Wakisaka, K. Ohnishi,
“Hydrogen absorption properties of Ti-Cr-A (A= V, Mo
or other transition metal) B.C.C. solid solution
alloys”, J. Alloys Comp., Vol.231, pp.528-532 (1995).
31. 謝成木, “鈦及鈦合金鑄造”, 機械工業出版社, pp.231-
262 (2004 年 10 月).
32. Y. Tominaga, S. Nishimura, T. Amemiya, T. Fuda, T.
Tamura, T. Kuriiwa, A. Kamegawa, M. Okada, “Protium
absorption–desorption properties of Ti-V-Cr alloys
with a BCC structure”, Mater. Trans., JIM, Vol.40,
pp.871-874 (1999).
33. Y. Tominaga, K. Matsumoto, T. Fuda, T. Tamura, T.
Kuriiwa, A. Kamegawa, H. Takamura, M. Okada,
“Protium absorption–desorption properties of Ti-V-Cr-
(Mn, Ni) alloys”, Mater. Trans., JIM, Vol.41, pp.617-
620 (2000).
34. T. Tamura, M. Hatakeyama, T. Ebinuma, A. Kamegawa, H.
Takamura, M. Okada, “Protium absorption
properties of Ti–V–Cr–Mn alloys in the low
pressure regions”, Mater. Trans., Vol.43, pp.1120-
1123 (2002).
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明