博碩士論文 943208011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.221.146.223
姓名 陳貞吟(Chen-yin Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 固態氧化物燃料電池連接板材料開發與改質研究
(Development and Modification of Interconnet Materials for SOFC Cell Stack)
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前連接板材料的選擇有陶瓷材料及金屬合金材料,兩者各有其優缺點,如陶瓷材料可運作在較高的溫度且抗蝕性及抗氧化性佳,而金屬材料的可加工性及製作成本則優於陶瓷材料;計畫結合上述兩種材料之優點,於金屬合金上連接板塗佈適用於SOFC的陶瓷材料。本研究團隊利用核能所提供之金屬連接板材Crofer22,發展陶瓷材料表面處理技術,以甘氨酸/硝酸鹽法(Glycine-Nitrate Process, GNP)製備La1-xCaxCrO3 (LCC)鑭系金屬氧化物進行塗佈。LCC具有很好的抗高溫氧化性、良好的導電性。利用不同燒結時間與溫度、陶瓷材料濃度、塗佈層厚度之製程條件,以強化連接板材的抗蝕性及抗氧化性,提高連接板材的性能及運轉時的耐久性,並分析不同製程所得材料之物化性質與導電性質。
本研究以XRD鑑定結果證明在金屬表面噴鍍La1-xCaxCrO3 (LCC)化合物,在高溫800 ℃且長時間之操作下可抑止金屬表面FeCr2O4氧化峰之生成。藉由SEM之分析得知LCC/Crofer22複合連接板之附著度良好且不脫落,進而証明LCC與Crofer22之熱膨脹係數相近,不會因熱膨脹而導致電池組件斷裂或剝離。本研究也利用比表面積電阻(ASR)測試陶瓷/金屬複合連接板之導電性能,原未塗佈之試片,經過長時間(82小時)氧化後,其ASR值由1.0361增加至3.0740 mΩ-cm2,但經塗佈後之ASR值可下降至0.9263 mΩ-cm2,證明塗佈後之複合連接板於高溫下操作可提升其導電度。
統合上述之研究成果,藉由合金表層批覆技術之開發,改善原合金材料之高溫特性,使陶瓷/金屬複合連接板在高溫運轉條件下,具足夠的化學穩定性,有效提升抗蝕性及抗氧化性且符合低成本等要求,以達到本研究計畫之目標。
摘要(英) Two choices for interconnect materials are ceramic and metallic alloy materials. To combine the advantages of these materials, we’ll coat high electronic conductivity ceramic materials, such as lanthanide series metal oxides (La1-xCaxCrO3, LCC). LCC powder materials were synthesized by the glycine-nitrate-process(GNP). Our study included different sintering times and temperatures, concentrations of coating ceramic materials, and thickness of coating. The effects of different test conditions are related to performance.
From XRD results, longer sintering time could also induce the undesired formation of FeCr¬2O4. From SEM results, we clearly saw that the coating layer was quite smooth and the LCC20-coated Crofer22 composite was suitable as an interconnect in SOFC since it could prevent Cr from oxidation and volatilization at high internal temperatures under SOFC operation conditions. For ASR measurements, the ASR of fresh Crofer22 was measured at 1.0361 mΩ-cm2. After 100 hr oxidation, the result of non-coated sample was 3.0740 mΩ-cm2. With a similar setup to LCC20-coated samples, results were 0.9263 mΩ-cm2. These results improved the ability of the composite interconnect to promote electronic conductivity at high internal temperatures.
Through comprehensive studies, we seek to develop ceramic/metal composite interconnect materials with low cost, high electronic conductivity, great high temperature characteristics, high oxidation resistance, puncture resistance, and stability under multiple chemical gases.
關鍵字(中) ★ 金屬合金材料
★ 固態氧化物燃料電池
★ 連接板材料
★ 陶瓷材料
關鍵字(英) ★ Cro
★ Solid Oxide Fuel cell
★ interconnect materials
論文目次 中文摘要…………………………………………………………………………I
英文摘要………………………………………………………………………II
謝致 III
目錄 IV
圖目錄 ………VII
表目錄 ………………………….. X
第一章 緒論………………………………………………………………..01
1.1. 前言………………………………………………………………..01
1.2. 燃料電池發展簡介………………………………………………..02
1.3. 研究目的及架構…………………………………………………..05
第二章 文獻回顧……………………………………………………………09
2.1. 連接板的作用原理與特性要求…………………………………..09
2.2. 連接板的種類……………………………………………………...12
2.2.1. 陶瓷連接板材料………………………………………………12
(A)鉻酸鑭(LaCrO3)材料………………………………………13
(B) La1-xSrxCrO3 (LSC)材料…………………………….…….16
(C) Sr3(VO4)2摻入LSC………………………………………..17
(D) Al和Co摻入LSC…………………………………………...18
(E) La1-xSrxMnO3 (LSM)材料……………………....................19
(F) La1-xCa xCrO3 (LCC)材料………………………….............20
(G) LSC及LCC之比較………………………………………21
2.2.2. 金屬合金連接板材料…………………………………….......24
2.2.3. 陶瓷/金屬複合連接板材料…………………………………..29
2.3. 固態氧化物燃料電池之燒製技術………………………………......32
第三章 實驗方法………………………………………………………………36
3.1. 實驗儀器設備………………………………………………………..36
3.2. 實驗藥品器材………………………………………………………..37
3.3. 實驗步驟……………………………………………………………..38
3.3.1. 以甘氨酸-硝酸鹽法製備La1-xCaxCrO3材料………………...…38
3.3.2. 金屬連接板拋光………………………………………………...41
3.3.3. 陶瓷/金屬複合連接板製備……………………………………..41
3.4. 材料鑑定分析………………………………………………………..42
3.4.1. X光繞射分析…………………………………….……………42
3.4.2. 掃描式電子顯微鏡分析………………………………………...43
3.4.3. 穿透式電子顯微鏡分析………………………………………...43
3.4.4. 光學顯微鏡分析………………………………………………...43
3.5. 材料電化學特性分析………………………………………………..44
3.5.1. 比表面積電阻值測試…………………………………………...44
第四章 結果與討論……………………………………………………………46
4.1. 以LCC20噴鍍Crofer22金屬連接板之鑑定與電導分析…………46
4.1.1. XRD分析………………………………………………………...53
(A) 煆燒溫度變因………………………………………………54
(B) 煆燒時間變因………………………………………………56
4.1.2. SEM分析斷面型態與結構……………………………………...58
4.1.3. TEM分析合成材料之表面型態………………………………...61
4.1.4. 比表面積電阻值測試…………………………………………...61
4.2. 以LSC20、LSM20噴鍍Crofer22金屬連接板之鑑定與電導分析...63
4.2.1. XRD分析………………………………………………………...67
4.2.2. SEM分析斷面型態與結構……………………………………...68
4.2.3. TEM分析合成材料之表面型態………………………………...72
4.2.4. 比表面積電阻值測試…………………………………………...73
第五章 結論……………………………………………………………………75
第六章 參考文獻………………………………………………………………78
參考文獻 1. 衣寶廉, 黃朝榮, 林修正, ”燃料電池-原理與應用”, 五南圖書, 臺北
(2005).
2. 許寧逸, 顏溪成, “由碳能朝向氫能的燃料電池”, 科學發展雜誌, 367期
(2003).
3. Molten Carbonate Fuel Cell, http://www.brainnew.com.tw/Article/naps2004
Popu101004.htm
4. 洪永杰, “固態氧化物燃料電池專利檢索與分析報告”, 元智大學 (2005).
5. 台灣燃料電池資訊網, http://www.tfci.org.tw/Fc/class.asp
6. S.H. Chan, M.A. Ellail, and T.Z. Yan, Proceedings of 35th National Heat Transfer Conference, Anaheim, California, June 10-12 (2001).
7. S.H. Chan, K.R. Beshay, and M.A. Ellail, The Third Asia-Pacific Conference on Combustion, Seoul, Korea, June 24-27 (2001).
8. R. Zheng and Z. Don, Proceedings of DETC 01: ASME2001 Design
Engineering Technical Conference, Pittsburgh, PA, Sept. (2001).
9. R.F. Savinell, J.S. Wainright, L. Dudik, K. Yee, L. Chen, C.C. Liu, Y.
Zheng, and M. Liu, 197th ECS Meeting Abstract, Volume 2000-1, 63, May
14-18, Toronto, Canada (2000).
10. L. Dudik, J.S. Wainright, R.F. Savinell, and C.C. Liu, International Fuel
Cell Symposium June 21-22, Taipei, Taiwan, R.O.C. (2001).
11. S.C. Singhal, MRS Bulletin, March (2000).
12. N.Q. Minh, J. Am. Ceram. Soc.,76, 563 (1993).
13. N.Q. Minh, C.R. Horne, F.S. Liu, D.M. Moffatt, P.R. Staszak, T.L.
Stillwagon, and J.J. VanAckeren, Proceedings of the Twenty fifth
Intersociety Energy Conversion Engineering Conference, vol. 13, American
Institute of Chemical Engineers, New York, p. 256 (1990).
14. 邱耀平, “平板型固態氧化物燃料電池之電化學與熱傳分析”, 行政院原
子能委員會-核能研究所, (2005).
15. H. Tde, Natural Gas Reformed Fuel Cell Power Generation Systems-A
Comparison of Three System Efficiencies. Proceedings of the Twenty
Fourth Intersociety Energy Convention Engineering Conference, The
Institute of Electrical and Electronics Engineers, Washington, DC, (1989).
16. A. Khandkar and S. Elangovan, Proceedings of the Second Annual Fuel
Cells Contractors Review Meeting, U.S.DOE/METC, p. 152, June, (1991).
17. C.J. Warde, A.O. Isenberg, and J.T. Brown, High-Temperature Solid-
Electrolyte Fuel-Cells Status and Programs at Westinghouse, In Program
and Abstracts, ERDA/EPRI Fuel Cell Seminar, Palo Alto, CA, June 29
to July 1, (1976).
18. W.J. Dollard and J.T. Brown, Overview of the Westinghouse Solid Oxide
Fuel Cell Program, Fuel Cell Abstracts, 1986 Fuel Cell Seminar, Tucson,
AZ, Oct., 26-29, (1986).
19. N. Maskalick, Contaminant Effects in Solid Oxide Fuel Cells, Proceedings
of the Fourth Annual Fuel Cells Contractors Review Meeting, U.S.DOE/
METC, July, (1992).
20. S.P.S. Badwal, Solid State Ionics, 143, 39 (2001).
21. J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett (Eds.),
Fuel Cell Handbook, US Department of Energy, Morgantown, WV, 1
(1998).
22. K. Foger, R. Donelson, R. Ratnarj, in: S.C. Singhal, and M. Dokiya, (Eds.),
(SOFC-VI), Proceedings of the Sixth International Symposium on Solid
Oxide Fuel Cells, Honolulu, Hawaii, October 17-22, 95 (1999).
23. M. C. Williams., Taiwan SOFC Workshop, June 06~08(2006).
24. T. Nishi, N. Hisatome, H. Yamamoto, and N. Murakami, in: P.Vincenzini
(Ed.), Proc. 9th Cimtec—World Forum on New Materials, Innovative
Materials in Advanced Energy Technologies, vol. 24, Techna Publishers
S.R.L., Faenza, Italy, 41 (1999).
25. G. Pudmich, B.A. Boukamp, M.G. Cuenza, W. Jungen, W. Zipprich, and F.
Tietz, Solid State Ionics, 135, 433 (2000).
26. N.Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells
(1995).
27. F. Tietz, H.-P. Buchkremer, and D. Stover, Solid State Ionic, 152/153, 373
(2002).
28. D.B. Meadowcroft, in: T. Gray, (Ed.), International Conference on
Strontium Containing Compounds, Atlantic Research Institute, Halifax,
Canada, 119 (1973).
29. I. Yasuda and T. Hikita, J. Electrochem. Soc., 140, 1699 (1993).
30. B.C.H. Steele, in: Proc. of the First European Solid Oxide Fuel Cell Forum,
ed. U. Bossel, Baden, Switzerland, 375 (1993).
31. M. Mori, H. Itoh, N. Mori, and T. Abe, in: Porc. of the Third International
Solid Oxide Fuel Cell Symposium, eds. S.C. Singhal and H. Iwahara,
Electrochemical Society, Pennington, NJ, 325 (1993).
32. S.C Singhal, in: Proc. of the Second International Solid Oxide Fuel Cell
Symposium, eds. F. Gross, P. Zegers, S.C Singhal and O. Yamamoto,
Commission of the European Communities, Luxembourg, 25 (1991).
33. G.M. Christie, P.H. Middleton, and B.C.H. Steele, J. European Cer. Soc., 14,
163 (1994).
34. M. Mori, T. Yamamoto, H. Itoh, and T. Abe, in: Proc. of the Fourth
International Solid Oxide Fuel Cell Symposium, ed. M. Dokiya, O.
Yamamoto, H. Tagawa and S.C. Singhal, Electrochemical Society,
Pennington, NJ, 905 (1995).
35. N.M. Sammes and C.E. Hatchwell, Materials Letters, 32, 339 (1997).
36. N.M. Sammes and R. Ratnaraj, J. Mater. Sci., 30, 4523 (1995).
37. N.M. Sammes, R. Ratnarnj, and C. Hatchwell, in: Proc. of the Fourth
International Solid Oxide Fuel Cell Symposium, ed. M. Dokiya, O.
Yamamoto, H. Tagawa and S.C. Singhal, Electrochemical Society,
Pennington, NJ, 952 (1995).
38. S.P. Simner, J.S. Hardy, J.W. Stevenson, and T.R. Armstrong, Solid State
Ionics, 128, 53 (2000).
39. M. Mori and N. M. Sammes, Solid State Ionics, 146, 301 (2002).
40. 黃鎮江, “燃料電池”, 全華科技圖書, 臺北 (2003).
41. T. Horita, M. Ishikawa, K. Yamaji, N. Sakai, H. Yokokawa, and M. Dokiya,
Solid State Ionics, 124, 301 (1999).
42. J.W. Fergus, Solid State Ionic, 171, 1 (2004).
43. K.Q. Huang, P.Y. Hou, and J.B. Goodenough, Solid State Ionics, 129, 237
(2000).
44. T. Brylewski, M. Nanko, T. Maruyama, Solid State Ionics, 143, 131 (2001).
45.G.V. Samsonovin, in: C.N. Turton, T.I. Turton (Eds.), The Oxide
Handbook, Plenum Press, 125 (1973).
46.T. Malkow, W. J. Quadakkers, L. Singheiser and H. Nickel, “Report
Forschungszentrum Julich”, Julich, FRG, Jul-3589, ISSN 0944-2952
(1998).
47. P.J. Ennis and W. J. Quadakkers, “Conference High Temperature Alloys-
Their Exploitable Potential”, Elsevier Applied Science London, 465 (1987).
48. T. Malkow, U. V. D. Crone, A. M. Laptev, T. Koppitz, U. Breuer and W. J.
Quadakkers, “Solid Oxide Fuel Cells”, The Electrochemical Society
Proceedings Series, Pennington, NJ, PV97-40, 1245 (1997).
49. S.P.S. Badwal and K. Foger, Mater. Sci. Forum, 21, 183 (1997).
50. J.W. Fergus, Materials Science and Engineering A, 397, 271 (2005).
51. H. Nabielek, Taiwan SOFC Workshop, June 06~08(2006).
52. W.J. Quadakkers, H. Greiner, M. Hansel, A. Pattanaik, A.S. Khanna and W.
Mallener, Solid State Ionics, 91, 55 (1996).
53. E. Batawi, A. Plas, W. Straub, K. Honegger, and R. Diethelm, in: S.C.
Singhal, M. Dokiya (Eds.), Proceedings of the 6th International Symposium
on Solid Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17–22 October,
767 (1999).
54. E. Batawi, W. Glatz, W. Kraussler, and M. Janousek, in: S.C. Singhal, M.
Dokiya (Eds.), Proceedings of the 6th International Symposium on Solid
Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17–22 October, 731
(1999).
55. K. Honegger, A. Plas, R. Diethelm, and W. Glatz, in: H. Yokokawa, S.C.
Singhal (Eds.), Proceedings of the 7th International Symposium on Solid
Oxide Fuel Cells (SOFC VII), Tsukuba, Ibaraki, Japan, 3–8 June, 803
(2001).
56. Y. Yoo and M. Daugo, in: H. Yokokawa, S.C. Singhal (Eds.), Proceedings
of the 7th International Symposium on Solid Oxide Fuel Cells (SOFC VII),
Tsukuba, Ibaraki, Japan, 3–8 June, 837 (2001).
57. K. Fujita, K. Ogaswara, Y. Matsuzaki, and T. Sakurai, J. Power Sources
131, 261 (2004).
58. W.Z. Zhu , Materials Research Bulletin, 38, 957 (2003).
59. J.H. Kim, R.H. Song and S.H. Hyun, Solid State Ionics, 174, 185 (2004).
60.陳誦英, 王峰雲, 鄭淑芬, ”固體氧化物燃料電池(SOFC)研究進展和發
展動態 “ (2003).
61.高銘政, 碩士論文, “以溶膠-凝膠法製備鈦酸鉛鎂焦電薄膜感測元件之
研究”, 國立中山大學, 中華民國台灣 (1999).
62. Q. Xu, W.F. Guo, W. Chen, H. Wang, D.P. Huang, B.T. Wang, ”Sintering
and Electronic Conducting Properties of La0.8Ca0.2CrO3.”, SciencePaper
Online (2004)
63. T. Brylewski, K. Przybylski, and J. Morgiel, Materials Chemistry and
Physics, 81, 434 (2003).
64. X. Chen, P.Y. Hou, C.P. Jacobson, S.J. Visco, and L.C.D. Jonghe, Solid
State Ionics, 176, 425 (2005).
65. L.P.R.Vazquez, J.C.R.Angeles, J.L.R.Galicia, C.A.G.Chavarria, K.J. Zhu,
and K.Yanagisawa, Journal of the European Ceramic Society, 26 , 81
(2006).
66. R. Subasri, T. Mathews , K. Swaminathan, O.M. Sreedharan, Journal of
Alloys and Compounds, 354, 193 (2003).
67. J.Q. Li, P. Xiao, Journal of the European Ceramic Society, 21, 659 (2001).
指導教授 費定國(George Ting-Kuo Fey) 審核日期 2007-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明