博碩士論文 943208012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.117.73.214
姓名 游智傑(Jhih-jie You)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 低氮氧化物燃燒器與加氫效應定量量測
(Quantitative Measurements of A Low-NOx Burner with the Consideration of Hydrogen Addition)
相關論文
★ 預混紊流燃燒:火花引燃機制與加氫效應之定量量測★ 平板式SOFC電池堆流場可視化與均勻度之實驗模擬和分析
★ 平板式SOFC單電池堆性能量測:棋盤狀流道尺寸效應★ 實驗量測分析Kee's燃料電池堆流場分佈模式之可靠度
★ 棋盤式雙極板尺寸效應對固態氧化物燃料電池性能之影響★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測
★ 自我加速蜂巢結構球狀火焰及其局部自我相似性之量測與分析★ 加壓型SOFC陽極支撐與電解質支撐單電池堆量測與分析
★ 高壓預混紊流球狀擴張火焰之自我相似性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le >1)★ 實驗研究密度比效應對紊流火焰速率之影響
★ 加壓型氨固態氧化物燃料電池之性能和穩定性量測★ 平板式加壓型合成氣固態氧化物燃料電池實驗研究
★ 雷射直寫系統最佳化及其單一細胞列印與光電醫學之應用★ 加壓型合成氣固態氧化物燃料電池加氨之實驗研究: 電池性能與穩定性量測
★ 高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析★ 合成氣固態氧化物燃料電池添加二氧化碳之實驗研究:電池性能與穩定性量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在1995, Bédat & Cheng (B & C)提出一弱漩渦燃燒器,它具有增加火焰穩定性、降低NOx生成及增加熱效率等優點。本研究以B & C之設計為參考範本,實作一弱漩渦噴流燃燒器(low swirl jet burner, LSJB),量測其紊流燃燒速度(turbulent burning velocities, ST)並首度探討其加氫效應。實驗使用貧油甲烷添加不同體積比例之氫氣(0 ~ 30%)為預混燃料,以高速質點影像測速儀(particle imaging velocimetry, PIV),定量量測LSJB沿噴嘴出口到弱漩渦流場所形成之碗狀預混火焰最低點之平均速度(U)和紊流強度(turbulent intensity, u’’)以在穩定碗狀火焰之最底部處的U值定義為ST值,並確認LSJB在不同漩渦數(swirl number, S =方位角方向與軸向動量之軸通量比)和噴嘴出口雷諾數(Rej)之火焰跳脫與吹熄的操作範圍。我們首次運用小波轉換(wavelet transform, WT)分析LSJB速度場資料,以獲取重要之時空物理尺度,並使用氣體分析儀量測燃燒後生成物之[NOx]與[CO],以瞭解掌握貧油預混燃燒加氫之技術。實驗結果顯示,隨Rej增加,會使LSJB火焰能穩定操作之S值範圍變窄。由未反應與反應之冷熱流場PIV量測,發現在碗狀火焰底部處之冷流場U值約為熱流場之兩倍,但u’’值約略相同。由熱流場之機率密度函數與能量頻譜分析,顯示此一化學反應流場並非等向性紊流場,此點與B & C所得結果不同。並由WT分析碗狀火焰底部處區域之流場軸向速度(u)與徑向速度(v)的資料,獲取特徵長度與時間尺度,分析噴嘴中心往下游方向之u與v發現在所得之泰勒長度尺度與火焰平均傳遞變數(mean progress variable)厚度尺度(即火焰震盪範圍)相同,約0.8 cm左右。有關特徵時間尺度,軸向與徑向約略相同。在ST值量測方面,發現ST值及u’’值會隨著Rej增加而增加,至少在Rej = 4700 ~ 11000的範圍內。但在任一固定Rej值下,ST與u’’值有不小的誤差,尤其是當S值在吹熄極限附近,所以LSJB並非ㄧ理想量測ST之裝置。有關加氫效應,隨著加氫量少量的增加,[NOx]有些微增加的趨勢,而[CO]值則有劇減的趨勢,且ST值均較未加氫時高,例如加氫量由0%增加到30%,ST增加幅度可達約30%,但u’’值增加幅度均小於10%,[NOx]則從0 ppm增加到1.7 ppm,以及[CO]從5500 ppm劇減至2500 ppm。因此本研究之LSJB並非ㄧ準確量測ST之標準設備,但是LSJB確實為一極佳之低氮氧化物燃燒器,可廣泛的實際應用,如氣渦輪機發電系統。
摘要(英) In 1995, Bédat & Cheng (B & C) proposed a low swirl burner which can enhance flame stability, reduce NOx formation and increase thermal efficiency. In this study we apply the concept of B & C to design and make a low swirl jet burner (LSJB) for measurements of turbulent burning velocities (ST) and investigation of the effect of hydrogen addition for the first time. Lean methane doping with 0 ~ 30% hydrogen by volume as a fuel is used. Quantitative measurements of velocity fields including both average velocities (U) and r.m.s turbulent intensities (u’’) from the nozzle exit to the stabilized bowl-shape flame and above are obtained using high-speed particle imaging velocimetry (PIV). The value of ST is chosen as the value of U just at the bottom position of the stabilized bowl-shape flame. Identification of the stable operation ranges between flashback and blowoff limits of the LSJB is also made over a range of a swirling number (S) defined as the ratio of the axial flux of the angular momentum divided by the radius of the burner exit to the axial flux of the linear momentum, and the jet Reynolds number (Rej). We apply the wavelet transform (WT) to analyze spatiotemporal scales of the LSJB using these PIV time sequent data for the first time. [NOx] and [CO] in the products are measured by the gas analyzer. Thus, the knowledge of hydrogen addition on lean premixed combustion can be learned. The results show that the stable combustion ranges of S for the LSJB becomes narrower with increasing Rej. PIV measurements indicate that at the same lowermost point of the bowl-shaped flame, U of nonreacting cold flow is twice more in magnitude than that of reacting hot flow with about the same u’’. Probability density functions and energy spectra of reacting hot flows indicate that the present flow is not isotropic and this result differs with that found by B & C. The spatial characteristic length scales, approximate to the Taylor length scale, determined from the axial and radial velocity data along the nozzle axis using WT are found to be approximately the same as the thicknesses of a mean progress variable (flame brush thickness), about 0.8 cm. Temporal characteristic scales are also identified by the WT analysis and both values are roughly the same in both axial and radial directions. The measured values of ST and u’’ are found to increase with increasing Rej, at least in the range of Rej = 4,700 ~ 11,000, where errors of values of ST and u’’ at a fixed Rej cannot be neglected especially when S approaching blowoff limits. Moreover, by adding a small amount of hydrogen [CO] can be significantly reduced with only a slightly increase of [NOx]. As the hydrogen addition increases from 0% to 30%, values of ST can be increased 30% more the increases of u’’ smaller than 10%, and [NOx] and [CO] vary from 0 to 1.7 ppm and from 5,500 to 2,500 ppm, respectively. Hence, it is concluded that the present LSJB cannot be as a benchmark device for accurate measurements of ST, but it is indeed an excellent low-NOx burner which can be need in many practical applications such as gas turbines for electricity generation.
關鍵字(中) ★ 小波轉換
★ 加氫效應
★ 質點影像測速儀
★ 紊流燃燒速度
★ 低氮氧化物燃燒器
關鍵字(英) ★ wavelet transform
★ hydrogen addition
★ particle image velocimetry
★ turbulent burning velocity
★ low-NOx burner
論文目次 目錄
摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖表目錄 VIII
符號說明 XI
第一章 前言 1
1.1研究動機 1
1.2問題所在 2
1.3解決方法 3
1.4論文架構 4
第二章 文獻回顧 5
2.1預混紊流燃燒器設計 5
2.2預混紊流燃燒理論 6
2.3預混紊流燃燒簡介 6
2.4漩渦火焰之原理 8
2.4.1漩渦流場特性 8
2.4.2漩渦流產生方式 9
2.4.3漩渦火焰和燃燒器 10
2.5加氫燃燒研究 11
2.6污染物影響 13
第三章 實驗設備與方法 19
3.1低氮氧化物燃燒器 19
3.2燃氣供應系統 20
3.2.1實驗氣體與流量控制混合裝置 20
3.2.2實驗操作條件 21
3.3雷射斷層攝影術(Laser tomography) 22
3.4高速質點影像測速技術(Particle image velocimetry) 24
3.5紊流燃燒速度之量測分析 25
3.6生成物濃度量測 26
3.7實驗流程 27
第四章 結果與討論 34
4.1低氮氧化物燃燒器穩定操作範圍 34
4.2漩渦流場特性 34
4.2.1漩渦冷熱流場特性 35
4.2.2 PIV誤差分析 36
4.3預混紊流燃燒速度 37
4.3.1紊流燃燒速度之量測 37
4.3.2漩渦數對紊流燃燒速度影響 37
4.4加氫效應 38
4.4.1燃燒器操作範圍 38
4.4.2廢氣量測比較 39
4.4.3紊流燃燒速度差異 39
第五章 結論與未來工作 57
5.1結論 57
5.2未來工作 57
參考文獻 59
參考文獻 Abdel-Gayed, R., Bradley, D. & Lawes, M. 1987 Turbulent burning velocities: a general correlation in terms of straining rates. Proc. R. Soc. Lond. A 414, 389-413.
Aldredge, R. C., Vaezi, V. & Ronney, P. D. 1998 Premixed flame propagateion in turbulent Taylor-couette flow. Combust. Flame 115, 395-405.
Bédat, B. & Cheng, R. K. 1995 Experimental study of premixed flames in intense isotropic turbulence. Combust. Flame 100, 486-494.
Bradley, D. 1992 How Fast Can We Burn? Proc. Combust. Inst. 24, 247-262.
Chen, C. K., Lau., K. S., Chin, W. K. & Cheng, R. K. 1992 Freely propagation open premixed turbulent flames stabilized by swirl. Proc. Combust. Inst. 24, 511-518.
Chen, R. H. & Driscoll, J. F. 1988 The role of the recirculation vortex in improving fuel-air mixing within swirling flames. Proc. Combust. Inst. 22, 531-540.
Cheng, R. K. 1995 Velocity and scalar characteristics of premixed turbulent flames stabilized by weak swirl. Combust. Flame 101, 1-14.
Cheng, R. K., Fable, S. A., Schmidt, D., Arellano, L. & Smith, K. O. 2001 Development of a low swirl injector concept for gas turbines. Processings of International Joint Power Conference, New Orleans, Louisiana, USA, June 4-7.
Cheng, R. K., Yegian, D. T., Miyasato, M. M., Samuelsen, G. S., Benson, C. E., Pellizzari, R. & Loftus, P. 2000 Scaling and development of low-swirl burners for low emission furnaces and boilers. Proc. Combust. Inst. 28, 1305-1313.
Chigier, N. A. & Chervinsky, A., 1967 Experimental investigation of swirling vortex motion in jets. J. Appl. Mech. 34, 443-451.
Cho, P., Law, C. K., Hertzbeqrg, J. H. & Cheng, R. K. 1986 Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493-1499.
Claypole, T. C. & Syred, N. 1980 The effect of swirl burner aerodynamics on NOx formation. Proc. Combust. Inst. 18, 81-89.
Damköhler, G. 1940 The effect of turbulent on the flame velocity in gas mixtures. Z. Elektrchem. 46, 601-652.
Energy Information Administration 2007 International Energy Outlook. Rep. No. DOE/EIA-0484 (http://www.eia.doe.gov/oiaf/ieo).
Gupta, A. K., Lilley, D. G. & Syred, N. 1984 Swirl Flows. Abacus Press, Tunbridge Wells, England.
Johnson, M. R., Littlejohn, D., Nazeer, W. A., Smith, K. O. & Cheng, R. K. 2005 A comparison of the flowfields and emissions of high-swirl injectors and low-swirl injectors for lean premixed gas turbines. Proc. Combust. Inst. 30, 2867-2874.
Kido, G. A., Huang, S., Tanoue, H. & Nitta, T. 1994 Improving the combustion performance of lean hydrocarbon mixtures by hydrogen addition. JSME Review 15, 165-167.
Law, C. K., Zhu, D. L. & Yu, G. 1986 Propagation and extinction of stretched premixed flames. Proc. Combust. Inst. 21, 1419-1426.
Plessing, T., Kortshik, C., Peters, N., Mansour, M. S. & Cheng, R. K. 2000 Measurements of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner. Proc. Combust. Inst. 28, 359-366.
Shy, S. S., Lee, E. I., Chang, N. W. & Yang, S. I. 2000a Direct and indirect measurements of flame surface density, orientation, and curvature for premixed turbulent combustion modeling in a cruciform burner. Proc. Combust. Inst. 28, 383-390.
Shy, S. S., Lin, W. J. & Peng, K. Z. 2000b High-intensity turbulent premixed combustion: general correlations of turbulent burning velocities in a new cruciform burner. Proc. Combust. Inst. 28, 561-568.
Shy, S. S., Lin, W. J. & Wei, J. C. 2000c An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion. Proc. R. Soc. Lond. A 456, 1997-2019.
Syred, N. & Beér, J. M. 1974 Combustion in swirling flows: a review. Combust. Flame 23, 143-201.
Turns, S. R. 2002 An introduction to combustion. 2nd Edition, McGraw-Hill.
Glassman, I. 1996 Combustion. 3rd Edition, Academic press.
Uykur, C., Henshaw, P. F., Ting, D. S. K. & Barron, R. M., 2001 Effects of addition of electrolysis products on methane/air premixed laminar combustion. Int. J. Hydrogen Energy 26, 265-273.
Yang, T. S., Shy, S. S. & Chyou, Y. P. 2005 Spatiotemporal intermittency measurements in a gas-phase near-isotropic turbulence using high-speed DPIV and wavelet analysis. J. Mech. 21, 157-169.
Yegian, D. T. & Cheng, R. K. 1998 Development of lean premixed low-swirl burner for low NOx practical application. Combust. Sci. Tech. 139, 207-227.
Yetter, R. A., Glassman, I. & Gabler, H. C. 2000 Asymmetric whirl combustion: a new low NOx approach. Proc. Combust. Inst. 28, 1265-1272.
Yu, G., Law, C. K. & Wu, C. K. 1986 Laminar flame speed of hydrocarbon + air mixtures with hydrogen addition. Combust. Flame 63, 339-347.
尹偉光 1996 預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展。 碩士論文,國立中央大學機械工程研究所。
林文基 1999 甲烷與丙烷預混紊流燃燒速度的量測。 碩士論文,國立中央大學機械工程研究所。
林孟良 1998 氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場。 碩士論文,國立中央大學機械工程研究所。
陳彥志 2002 潔淨能源:高效率天然氣加氫燃燒技術與汙染排放物定量量測。 碩士論文,國立中央大學機械工程研究所。
黃逸芳 2006 氫燃燒器與低氮氧化物燃燒器實作研究。 碩士論文,國立中央大學機械工程研究所。
魏建樟 1999 應用雷射斷層攝影術探討預混紊焰傳播。 碩士論文,國立中央大學機械工程研究所。
指導教授 施聖洋(Shenq-yang Shy) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明