博碩士論文 943209002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:52.205.167.104
姓名 張書維(Shu-Wei Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化
(Catalytic activity of Ag-Cu and Ag-Co films for oxygen reduction reaction in 1M potassium hydroxide solution)
相關論文
★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究★ 以電化學方法在鋅箔上製備氧化鋅奈米結構
★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用
★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究
★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質
★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文利用磁控濺鍍方式製備不同成分比例的薄膜觸媒,利用電化學實驗,包含慢速極化掃瞄、循環伏安測試、旋轉電極測試等配合光電子能譜儀分析結果探討Ag-Cu和Ag-Co二元薄膜觸媒在1M KOH鹼性溶液中成分比例與氧還原(Oxygen reduction reaction, ORR)活性之間的關係。
慢速極化掃描結果可知:Cu和Co添加至Ag形成雙元薄膜電極,有助於提升其氧還原之催化活性,當Cu和Co濃度由10%增加至50%時,氧還原的催化活性越好。若比較Ag-Cu和Ag-Co兩種二元薄膜系統,Ag-Co系統的氧還原起始電位(0.179V)較Ag-Cu(0.089V)高,還原極限電流(-3.89mAcm-2)也較大,顯示Ag-Co二元薄膜系統對氧還原的催化效率較高。
循環伏安測試結果顯示:在Ag-Cu二元薄膜系統中若Cu濃度增高,則氧化物的還原峰會往負電位偏移,使Ag-O鍵結較強,因而導致O2中O-O之間的鍵結較易斷裂,此為Ag-Cu二元系統中Cu濃度增加會增進活性的可能原因;而Ag-Co二元系統中Co的濃度增加同樣也會使陰極峰向負電位偏移,但偏移大小不如Ag-Cu二元系統。
經由旋轉電極測試結果,配合Koutecky-Levich equation計算,結果顯示:Ag-Co系統中Co有助於催化包含四個電子的氧還原電極反應;而Ag-Cu系統則對於氧還原反應催化之電子數包含兩個電子,電子轉移數的差異顯示Ag-Co活性性較Ag-Cu佳。
XPS分析結果顯示:Ag-Co與Ag-Cu二元薄膜系統中銀金屬之含量與催化活性有密切關係,Ag-50Co中金屬Ag的比例較高,大約佔了70%以上,而Ag-50Cu中金屬Ag則佔約略55%左右,由先前Tafel實驗可知雙元金屬的活性中心為Ag,由於Ag-50Co中Ag的氧化物比例較低進而使活性面積比Ag-50Cu來的高,這可能是Ag-Co活性測試結果比Ag-Cu佳的原因。
摘要(英) Catalytic activity of Ag-Cu and Ag-Co films for oxygen reduction reaction (ORR) in KOH electrolyte was investigated in this work. Magnetron sputtering method was employed to prepare of Ag-Cu and Ag-Co thin films with different compositions. The dependence of the catalytic activity on the film composition was explored by means of the electrochemical techniques such as slow scan voltammetry(SSV), cyclic voltammetry(CV) and rotating disk electrode(RDE) with the aid of surface analysis of the films by x-ray Photoelectron Spectroscopy(XPS).
Resulting from SSV, it was found that the catalytic activity of Ag-Cu and Ag-Co films for ORR increases with increasing the concentration of Cu (10, 30, 50 at%) and Co (10, 30, 50 at%) in the films. The onset potential (0.179V) of Ag-Co is higher and more closely to the ideal equilibrium potential for ORR than that (0.089V) of Ag-Cu. The limiting current of reduction is higher for Ag-Co (-3.89mAcm-2) than Ag-Cu (-2.87mAcm-2). Thus the catalytic activity of Ag-Co films is better than that of Ag-Cu for ORR
According to cyclic voltammogram, the reduction peak of silver oxide is at lower potential for the Ag-Cu films compared to pure Ag film. This phenomenon indicates a stronger adsorbed-oxygen interaction with the Ag in Ag-Cu films than that in monotonic Ag-films. This stronger interaction between oxygen and silver facilitates the splitting of O-O bond thus increasing the ORR kinetics. There is also a shift of the reduction peak of silver oxide to lower potentials for the Ag-Co, however, less extent is this shift.
The number of electron transfer involved in an electrochemical reaction was estimated by fitting the RDE data into the Koutecky-Levich equation. It was calculated that almost four electrons transferred in the process of ORR on Ag-Co films. Less number (about three) of electrons transferred was found on the Ag-Cu films. This difference reflects that the catalytic activity is better for Ag-Co than Ag-Cu.
Analysis of XPS indicated that the catalytic activity of Ag-Cu and Ag-Co films decreases with increasing the percentage of silver oxide in the composition of the surface film. Higher percentage of silver oxide in Ag-Cu than Ag-Co leads to lower activity for the ORR.
關鍵字(中) ★ 氧還原反應
★ 慢速極化掃瞄
★ 循環伏安法
關鍵字(英) ★ Oxygen reduction reaction
★ Slow scan voltammetry
論文目次 中文摘要 I
英文摘要 III
致謝 V
目錄 VI
表目錄 X
圖目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
第二章 原理與文獻回顧 6
2.1 燃料電池之簡介 6
2.2 工作原理與反應機制 7
2.3 陰極觸媒氧還原反應 9
2.3.1 白金陰極觸媒相關研究 10
2.3.2 非白金陰極觸媒相關研究 12
2.4 氧還原陰極觸媒之分析方法 15
2.4.1 慢速極化掃描(SSV) 15
2.4.2 循環伏安法(CV) 17
2.4.3 旋轉碟型電極(RDE) 18
2.5 觸媒製備方式 20
第三章 實驗方法 32
3.1 實驗流程 32
3.2 試片準備 32
3.3 磁控濺鍍與濺鍍條件 23
3.4 電化學實驗 24
3.4.1 慢速極化掃描(SSV) 25
3.4.2 塔弗極化掃描(Tafel) 25
3.4.3 旋轉碟型電極(RDE) 25
3.4.4 循環伏安法(CV) 26
3.5 成份分析儀器 26
第四章 結果 27
4.1 Ag-Cu和Ag-Co二元薄膜觸媒製備與成分分析 27
4.1.1 能量散佈光譜儀(EDS)結果 27
4.1.2 X光繞射分析(XRD)結果 28
4.2 慢速極化掃描法(SSV)結果 29
4.2.1 純Ag慢速極化掃描結果 29
4.2.2 Ag-Cu慢速極化掃描結果 29
4.2.3 Ag-Co慢速極化掃描結果 30
4.3 塔弗極化(Tafel)掃描法結果 31
4.3.1 雙元素薄膜塔弗極化結果 31
4.3.2 純元素薄膜塔弗極化結果 32
4.4 旋轉碟型電極(RDE)結果 32
4.5 循環伏安法(CV)結果 33
4.5.1 純元素薄膜之CV掃描結果 33
4.5.2 Ag-Cu薄膜之CV掃描結果 34
4.5.3 Ag-Co薄膜之CV掃描結果 35
4.6 X光光電子能譜儀(XPS)結果 35
4.6.1 Ag-50Cu之XPS分析結果 36
4.6.2 Ag-50Co之XPS分析結果 37
第五章 討論 38
5.1 成分比例與觸媒活性之關係 38
5.2 塔弗與交換電流密度之討論 39
5.3 成分比例與電子轉移數之關係 40
5.4 電極表面反應之探討 41
5.4.1 純元素CV結果之鑑定 42
5.4.2 Ag-Cu系列CV結果之鑑定 42
5.4.3 Ag-Co系列CV結果之鑑定 43
5.4.4 Ag-Cu系列CV結果之探討 43
5.4.5 Ag-Co系列CV結果之探討 44
5.4.6 Ag-Cu和Ag-Co系列CV結果之比較 44
5.5 電極表面價態之分析 47
第六章 結論與未來展望 48
6.1結論 48
6.2未來展望 50
第七章 參考文獻 51
參考文獻 [Bai] Y. Bai, J. Wu, J. Xi, J. Wang, W. Zhu, L. Chen, X. Qiu, Electrochemistry Communications, 7,2005, pp.1087–1090
[Deng] C. Z. Deng and M. J. Dignam, Journal of Electrochemical Society, 145(10),1998, pp.3507-3512
[Fer1] J. L.Fernández, D. A. Walsh, A. J. Bard, Journal of American Chemical Society, 127(1), 2005, pp.357-365
[Fer2] J. L.Fernández, V. Raghuveer, A. Manthiram, A. J. Bard, Journal of American Chemical Society,127(38), 2005 pp.13100-13101
[Hu] F. P. Hu , X. G. Zhang , F. Xiao , J. L. Zhang, Carbon. 43, 2005, pp.2931–2936
[Hua] 黃鎮江, 燃料電池, 全華科技圖書股份有限公司, 2005, pp.2-4-2-5
[Ish] A. Ishihara, K. Lee, S. Doi, S. Mitsushima, N. Kamiya, M. Hara, K. Domen, K. Fukuda, K. I. Ota, Electrochemical and Solid-State Letters, 2005, 8 (4) pp.201-203
[Isa] I. B. On, R. Kirchain, R. Roth, Journal of Power Sources, 109, 2002, pp.71-75
[Ism] K.M. Ismail and W.A. Badawy, Journal of Applied
Electrochemistry 30, 2000, pp.1303-1311
[Ito] T. Itoh and K. Kato, U.S. Patent, 4, 970, 128, 1990
[Jal] V. Jalan, E.J. Taylor, Journal of Electrochemical Society, 130, 1983, p.2299
[Jia] R. Jiang, D. Chu, Electrochimica Acta, 45, 2000, pp.4025–4030
[Jian] T. Jiang, G.M. Brisard, Electrochimica Acta, 52, 2007 pp.4487–4496
[Kor] K. Kordesch, G. Simader. Fuel Cells and Their Application, 1996, pp.45-48
[Lee1] K. Lee, A. Ishihara, S. Mitsushima, N. Kamiyaa, K. I. Ota, Electrochimica Acta, 49, 2004, pp.3479–3485
[Lee2] H. K. Lee, J. P. Shim , Mi. Ja Shim , S. W. Kim , J. S. Lee, Materials Chemistry and Physics, 45, 1996, p.238-242
[Lee3] J.H. Lee , T.R. Lalk, A.J. Appleby, Journal of Power Sources, 70,1998 , p.261
[Levy] R.B. Levy, M. boudart, Science, 181, 1973, p.547
[Lima] F.H.B. Lima, J.F.R. de Castro, Edson A. Ticianelli, Journal of Power Sources, 161, 2006, pp.806–812
[Liu] Y. Liu, A. Ishihara, S. Mitsushima, N. Kamiya, and K. I. Ota, Electrochemical and Solid-State Letters, 8 (8) , 2005, pp.400-402
[Luc] F.J. Luczak, Journal of Catalysis, 43, 1976, p.376
[Mat] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi, Journal of Power Sources, 150, 2005, pp.27–31
[Meng] H. Meng, P. K. Shen, Electrochemistry Communications, 8, 2006, pp.588–594
[Muk1] S. Mukerjee, S. Srinivasan, Journal of Electroanalytical Chemistry. 357, 1993, p.201
[Muk2] S. Mukerjee, S. Srinivasan, M.P. Soriaga, Journal of Electrochemical Society, 142, 1995, p.1409
[Patt] M. Pattabi, R.H. Castellanos, R. Castillo, A.L. Ocampo, J. Moreira, P.J. Sebastian, J.C. McClure 2, X. Mathew, International Journal of Hydrogen Energy, 26, 2001 p.171-174
[Pou] M. Pourbaix, Atlas of Electrochemical Equilibria in Alueous Solutions, Pregramon Press, Oxford, 1966
[Pra] J. Prakash , H. Joachin, Electrochimica Acta, 45, 2000, pp.2289–2296
[Rag] V. Raghuveer, A. Manthiram, and A. J. Bard, Journal of Physical Chemistry. B, 109(48), 2005, pp.22909-22912
[Sav] O. Savadogo , K. Lee , K. Oishi , S. Mitsushima , N. Kamiya , K.-I. Ota, Electrochemistry Communications, 6, 2004, pp.105–109
[Shim] J. P. Shim, J. S. Lee, Proceedings of the 3rd Korea–ltaly Joint Symposium on Fuel Cell, Taejon, Korea, 1997, p. 149
[Shu] A.K. Shukla, M. Neergat, P. Bera, V. Jayaram, M.S. Hegde, Journal of Electroanalytical Chemistry, 504, 2001, pp.111–119
[Tsu] K. Tsurumi, T. Nakamura, A. Sato, U.S. Patent, 4, 985, 386, 1991
[Xio] L. Xiong, A.M. Kannan, A. Manthiram, Electrochemistry Communications, 4, 2002, pp.898–903
指導教授 林景崎(Jing-Chie Lin) 審核日期 2007-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明